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Identification of noise sources in aircraft cabins proves to be difficult particularly at low frequencies. A new 
approach, based on the Inverse Finite Element Method, reconstructs the spatial distribution of sound pressure 
and particle velocity. 
This procedure requires measurements in the cavity first. If all sound sources are located on the boundary, the 
equation system resulting from a matching FE model can be re-sorted in such a way that computation of the 
unknown boundary data is possible, even with distorted measurement data. 
The method is validated using a simplified 2D laboratory experiment consisting of a flat rectangle with sound-
hard boundary in which a loudspeaker is included. A corresponding numerical model is verified by mapping the 
sound pressure in the test bed. The inner part of the measurement data is used to compute the boundary data.  
To prepare a validation of this technique in real world conditions, the sound field in the cavity of an aircraft 
mock-up (Airbus A340) excited by both interior and exterior noise sources is mapped with a custom-built 
microphone array. A matching FE model is verified and compared to the measured data. 

1 Introduction 

Aircraft cabin noise causes a severe limitation of the 
passengers’ comfort. To localize acoustic hot spots, i.e. the 
main sources in the structure where sound is transmitted 
into the cabin, several techniques have been established, 
ranging from simple sound pressure or intensity 
measurements to more advanced methods such as 
Beamforming [1, 2], Acoustic Holography [3, 4, 5, 6], or 
Inverse Boundary Element Method (IBEM) [7]. Most of 
these techniques, however, are either highly ineffective or 
demand creating artificial free-field conditions to avoid 
standing waves. 
Therefore, a novel approach has been introduced to identify 
acoustic hot spots using an inverse finite element method 
(IFEM), see [8, 9, 10]. This technique is insensitive to 
standing waves and for this reason highly qualified for 
interior noise problems. 
The approach presented in this paper will be applied to 
reconstruct the distribution of sound pressure and particle 
velocity in the interior of the cabin based on a standard FE 
model. From a certain subspace of the interior, referred to 
as measurement area, data are taken and used as boundary 
conditions for the IFEM that will predict the sound field in 
the complete area, including the boundaries between 
interior and structure. Examining sound pressure and 
particle velocity on these boundaries, conclusions can be 
drawn to the location of acoustic hot spots. 

2 Noise Source Identification by 
inverse FEM 

The FE method for the time-harmonic analysis of weakly 
damped interior noise problems is based on the Helmholtz 
equation 

( ) ( )2 0p k pΔ + =x x ,                        (1) 

whereΔ represents the Laplace operator and k = 2π f / c the 
wave number that is determined by the excitation frequency 
f and the speed of sound c. The corresponding boundary 
conditions (BC) are given by the Dirichlet BC for the 
acoustic pressure 

p p=      on pR ,                            (2) 

and the Neumann BC for the normal component of particle 
velocity 

( )1
2 np i f vπ

ρ
− ⋅ ∇ =n     on vR .             (3) 

Discretization of Eq. (1) using the FE method leads to a set 
of algebraic equations for the sound pressure that can be 
summarized as 

=Kp v .                                   (4) 

K is the stiffness matrix, p the vector of the excess pressure 
and v a vector that is proportional to the particle velocity in 
the sound field, and therefore called generalized velocity 
vector. The solution of Eq. (4) with respect to the BC leads 
to the unknown pressure field p. This process is called 
forward calculation.  
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Fig. 1: Spatial domain decomposition 

 
In order to derive the IFEM the calculation domain is split 
into three regions: an inner measurement sub-domain (M), a 
transition sub-domain (T), and an outer boundary (B) as 
illustrated in Fig. 1. It is possible to decompose Eq. (4) as 
follows: 
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The first index of the three sound pressure sub-matrices pij 
and the three sub-matrices vij of the generalized velocity 
vector v denotes the sub-domain of the decomposed 
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calculation domain, whereas the second index denotes 
whether the variable is known (K) or unknown (U). 
As described in [10], in the absence of unknown volume 
sources in the transition and measurement sub-domain the 
unknown parts of the sound pressure vector p can be 
computed by the solution of a reduced problem that is given 
by 
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The solution of 
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leads to the unknown velocities at the outer boundary. This 
procedure is called inverse calculation. 
Eq. (6) can be solved to determine the complete sound field 
in the interior using only the measurements in the inner 
region of the sound field. For simplicity it is rewritten as 
follows: 

Ax = b ;                                  (8) 
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As stated in [8] it has been found that the condition number 
of the new portioned stiffness matrix A is very high, 
especially if realistic measurement errors are taken into 
account. Therefore, several regularization techniques such 
as Truncated Singular Value Decomposition (TSVD), 
Tikhonov Regularization (TR) or Conjugated Gradient 
Least Squares (CGLS) have been applied to solve the ill-
posed problem that is given by Eq. (8). 
More details about the regularization algorithms that have 
been used to solve Eq. (8) can be found in previous 
publications. The implementation of the TSVD and TR is 
described in [8, 9, 10]. 

3 2D Validation in a Laboratory 
Experiment 

The experimental validation of the IFEM was first realized 
in a simplified laboratory test bed. In this, standing waves 
could only propagate in two dimensions, so that the third 
dimension did not have to be taken into account. The cavity 
to be measured was enclosed hermetically in a cuboid 
formed by laminated fiberboard and acrylic glass. Length 
and width of the test bed were l = 0.70m and b = 0.50 m, 
the height was set h = 0.13m to prevent the propagation of 
modes below fmax = c/2h = 1320Hz. This is sufficiently 
greater than the frequency range to be considered (f < 
500Hz), so a two-dimensional FE model could be applied. 
The boundaries were estimated to be sound-hard, 
accordingly no damping was introduced in the FE model. A 

loudspeaker was included in the border to induce vibrations 
to the enclosed cavity. Its position was to be determined by 
the IFEM. 
As the mesh nodes of the corresponding FE model should 
be used as measurement positions at the same time and 
therefore be distributed uniformly, a refinement of the mesh 
towards the edges of the calculation domain was 
abandoned. However, this could have negative effects on 
the quality of the model. In order to compensate for these, 
an attempt was made to weaken the influence of the edge 
singularities by adding four bevels to the edges (see Fig. 2). 

 

reference
microphone

relocatable measurement
microphone

loudspeaker

 
 

Fig. 2: Test bed with bevels, mesh nodes and relocatable 
measurement microphone 

 
The mesh consisted of triangular elements with linear 
Lagrange trial functions and 165 respectively 153 degrees 
of freedom (DOF). The 2D model was validated by 
comparing the measured and numerically calculated 
resonance frequencies for f < 500Hz. The mesh nodes were 
transferred to the footpoint of the test bed. 

 

 
 

Fig. 3: FE mesh with 165 (left) resp. 153 DOF (with bevels, 
right) and highlighted inner measurement sub-domain 

 
In the following, the inner measurement sub-domain was 
defined, the sound pressure at the included nodes being 
captured as initial data for the IFEM (77 nodes, see Fig. 3).  
The system was excited with tonal noise at different 
frequencies. Power spectrum and phase in relation to a 
reference microphone were recorded for each position in 
the measurement sub-domain. In addition, as a benchmark 
for the inverse calculation, also the values on the outer 
boundary were measured. 
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In the FE model, the forward calculation was performed 
with a normal acceleration BC simulating the loudspeaker, 
its amplitude being determined by the acceleration 
measured on the loudspeaker membrane. 

  
Pressure (forward calculation) Pressure (inverse calculation)

x [m] x [m] [Pa]

y 
[m

]

y 
[m

]

 
 

Fig. 4: Comparison of magnitude of sound pressure. 
Left: forward calculation; right: measured data (inner sub-

domain) and inverse calculation (outer sub-domain) 

 
Fig. 4 compares the numerically calculated distribution of 
the sound pressure to the measured and inversely calculated 
values of the sound field attuning for excitation with f = 
400Hz. As a regularization technique, the TSVD was 
applied; the regularization parameter was chosen via L-
curve method [11]. 
The position of the sound source (x = 0.25m; y = 0.5m) is 
clearly recognizable in both cases. However, the 
oscillations on the boundary that are typical for ill-posed 
problems could not be fully eliminated. Possible causes for 
this are the suboptimal mesh, the edge singularities and the 
standard algorithm to find the optimal regularization 
parameter; these are subject to further investigations. 

 
Normal acceleration (forward calculation) Normal acceleration (inverse calculation)

Arc length s [m]

dv
n/

dt
 [m

/s
2 ]
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n/
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 [m

/s
2 ]

Arc lenght s [m]  
 

Fig. 5: Behaviour of the normal acceleration along the outer 
boundary. Left: forward calculation; right: inverse 

calculation 

 
More significant for the identification of sound sources than 
the pressure, however, is the particle velocity, because its 
normal component must be zero at sound-hard boundaries. 
As a consequence, a particle velocity distinctly greater or 
less than zero indicates a sound source or sink at the 
corresponding position. The particle velocity is derived 
from the sound pressure according to Euler’s equation 

dv
p

dt
ρ = −∇ ,                              (9) 

where ρ represents the density of air and ∇  the del 
operator. Fig. 5 shows the behavior of the normal 
acceleration dv/dt as a function of the arc length s along the 
outer boundary, in both forward and inverse calculation. 

Despite the oscillations of the sound pressure mentioned 
above, the position of the sound source can be identified 
clearly at s = 0.6m in both cases; also the magnitudes 
coincide well.  

4 3D Validation in an Aircraft  
Mock-up  

4.1 Mapping of the Mock-up 

In the next validation step, the IFEM will be applied in a 
more realistic experiment realized in an Airbus A-340 
fuselage segment. For that purpose, the three-dimensional 
sound field in the cabin of the mock-up was mapped with a 
custom built microphone array for two types of excitation: 

1. wideband noise excitation by a loudspeaker inside 
the cabin, 

2. wideband noise excitation by two loudspeakers 
outside of the cabin, located on each side of the 
fuselage where the engines would normally be. 

The first case has the advantage that the position of the 
noise source is known and can be compared to the result of 
the inverse calculation, so this experiment serves for 
validation of the IFEM. The second case is another step 
towards real-world conditions. The fuselage segment is 
fully equipped with floor, lining and hat racks; the seats 
have been removed to achieve more controllable 
conditions. The ends are closed with absorbing foam 
wedges to approach free field conditions in the 
corresponding direction (z axis). Fig. 6 shows the mock-up 
and the built-in measuring apparatus.  

 

 
 

Fig. 6: Aircraft mock-up (left), measuring apparatus (right) 

 
The mapping was done using a uniform three-dimensional 
grid with a distance of d = 0.17m between the measuring 
positions, resulting in a total of 7172 positions. A line array 
of up to 31 microphones (x = 1..31) was therefore moved 
along y axis (14 positions, y = 1..14) and z axis (22 
positions, z = 1..22). The dimensions of the mock-up and 
the grid are illustrated in Fig. 7.  
Again, power spectrum and phase in relation to a reference  
were recorded. For a later validation of the IFEM, the lining 
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was roughly scanned with a sound intensity probe to find 
hot spots. In addition, accelerometers were fixed on some 
of these. 

 
a) 

 
b) 

5.28m

2.
4m

 
 

Fig. 7: Dimensions of the mock-up (a) and the measured 
cavity (b) including measuring grid 

 

4.2 Validation of the FE Model 

In order to verify the corresponding FE model of the cavity 
as shown in Fig. 8, its convergence had to be secured. For 
this purpose, all boundaries were defined to be sound-hard. 
Ten eigenfrequencies around 200Hz were numerically 
calculated for different meshes with a growing number of 
DOF. This was achieved by relating the maximum element 
size to the wavelength λ, correlating to a maximum 
frequency of  fmax = 300Hz: 

max /d nλ= ;   max/c fλ = ;   4,5,...,11n = .         (9) 

 

 
 

Fig. 8: FE model of the cavity 

Since the distance between the single eigenfrequencies had 
the same order of magnitude as the amount each 
eigenfrequency decreased with every step of refinement, 
the matching eigenfrequencies were identified using the 
Modal Assurance Criterion (MAC) 

 

{ } { }
{ } { }{ } { }

2H

A B

H H

A A B B

ψ ψ

ψ ψ ψ ψ
.                   (10) 

 
The MAC is a scalar constant rating the causal relationship 
between two modal vectors {ψA} and {ψB}. It takes on 
values between zero, implying no consistent 
correspondence, to one, signifying a consistent 
correspondence [12]. By means of the MAC, the variances 
of eight eigenfrequencies could be monitored with growing 
mesh refinement. In Fig. 9, the number of DOF is plotted 
against the variance of each eigenfrequency from one 
refinement step to another. For the step from 69266 DOF to 
92084 DOF, the variance is less than 0.1 %, so 69266 DOF 
corresponding to dmax = λ/9 is considered sufficient.  

 
D

O
F

percentage of variance

Eigenfrequencies for finest mesh
(120358 DOF):

1. 194.31 Hz
2. 198.91 Hz
3. 200.56 Hz
4. 201.69 Hz
5. 202.20 Hz
6. 202.71 Hz
7. 203.01 Hz
8. 203.34 Hz

 
 

Fig. 9: Convergence of the FE model 

 

4.3 Comparison of Model and Mapping 

In the mock-up, the ends of the fuselage are not sound-hard 
but closed with absorbing material. However, for the 
application of the IFEM no a priori information on the 
boundary impedance is necessary – on the contrary, the 
boundary impedance can be deduced from the results of the 
IFEM (a near free field impedance resulting for the fuselage 
ends may be another factor for the validation of the IFEM). 
Nevertheless, to perform a forward calculation that roughly 
estimates the sound field excited by the internal 
loudspeaker, the ends were given a free field impedance 
BC. A normal acceleration BC was applied at the location 
of the loudspeaker, and the remaining boundaries were left 
sound-hard. 
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a) numerical result (z = 11, f = 293Hz) 

 
b) measured data (z = 11, f = 293Hz, internal loudspeaker) 

 
c) measured data (z = 11, f = 293Hz, external loudspeaker) 

 
 

Fig. 10: Slice plots for numerical result (a) and measured 
data with internal (b) and external (c) loud-speaker. (a) 

contains the position of the speaker near z = 22. Shown is 
the magnitude of the sound pressure in linear scale. 

 
Fig. 10 illustrates a slice plot of the symmetry plane of the 
fuselage referring to the two ends (z = 11), of the numerical 
result for f = 293Hz and the corresponding plots for internal 
and external loudspeaker excitation. This frequency was 
chosen because it showed a significant peak on a number of 
frequency response plots of the measured data. The 
amplitude values are not significant in these plots; the scale 
was adapted to enable merely a qualitative comparison. 
Despite the rough estimation of the BC, there are obvious 
similarities between the numerical result and the measured 
data for internal excitation. For excitation with the external 
speaker, however, the distribution of sound pressure differs 
significantly.  

5 Summary and Outlook 

In the first part of this paper, an inverse finite element 
method for noise source identification has been presented. 
In order to verify the IFEM, a laboratory experiment has 
been successfully applied using a simplified two-
dimensional test bed. The original sound field as well as the 
location of the sound source could be reconstructed. 
In the second part, the verification of the IFEM method in 
three-dimensional, more real-life conditions has been 

prepared. The cavity of an aircraft mock-up was mapped, a 
matching FE model was validated, and the sound pressure 
distribution of both has been compared. 
In ongoing work, the IFEM algorithm will be extended to 
three dimensions and an inverse calculation shall be 
performed using part of the mapped data.  
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