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Audible inspiration is a type of speech perturbation used in conjunction with other acoustic observations to 
assess different types of pathologic conditions of speech associated with neurological or vocal cord disorders. 
The perception of this voice perturbation is very subjective and difficult to appraise in a consistent form across 
multiple utterances, subjects and disorders. This work reports an algorithm to model the perception of audible 
inspirations. It automatically segments the inspirations in continuous speech based on time-frequency 
characteristics and estimates the magnitude of the perturbation through a linear combination of the number, 
duration and the intensity of the inspirations. The algorithm was evaluated with the Massachusetts Eye and Ear 
Infirmary Voice database and two other databases containing recording from motor speech disorders. Results: a 
new method to automatically segment inspiratory phonation was developed. It provided an average segmentation 
accuracy of 84.4% and enabled accurate objective judgments of the perturbations associated with audible 
inspirations.  

1 Introduction 

The use of instruments to assist the diagnosis and 
rehabilitation of speech disorders is common today in 
clinical practice. It has been enabled by an accelerated 
development of technology and an increasing interest of 
practitioners to provide accurate assessments of the acoustic 
perturbations. Acoustic analysis of speech is an interesting 
alternative of the instrumental assessment that provides 
objective measurements of different types of perturbations 
observed in disordered speech. This approach has a special 
relevance for pathologic conditions associated with 
neurological disorders that manifest speech perturbations 
since early stages of the disorders. In such cases, each 
acoustic perturbation is often assessed individually and later 
combined in a multidimensional analysis to achieve the 
general assessment. Some types of dysarthria are often 
studied with this approach [1] to assess the magnitude of 
the neurological lesion(s) and determine more effective 
rehabilitation strategies. Audible inspiration (AI) is often 
part of the multidimensional profile used to study these 
disorders. 
AI is the result of excessive constriction of the airway due 
to a variety of physiological or neuromuscular problems. It 
has been associated with utterances resulting from turbulent 
airflow passing through adducted vocal folds [2, 3, 4, 5], 
edema, paralysis, or due to muscular "slowness" caused by 
reduced control over speech musculature [1]. Other 
researchers have associated AI with prolapse of the vocal 
tract (stridor [6]) and with subglottal obstructions 
(wheezing [7]). 
The judgment of acoustic perturbations caused by AIs is 
commonly performed perceptually. It is often made based 
on a combination of different factors such as: intensity and 
frequency of occurrence. Normal voices can have 
occasional low-intensity AIs but they become pathologic if 
they affect normal prosodic patterns. Duration and intensity 
also provide relevant information about the originating 
causes. A more constricted airway imposes longer 
inhalation periods and louder inspirations. A stronger 
inhalation produces inspirations with shorter duration but 
more intense. This is because the pressure in the constricted 
area drops causing vibration of both the glottis and 
surrounded tissue. The perceptual method, however, is very 
subjective and difficult to appraise consistently across 
multiple trials, subjects and disorders [8].  
Orlikoff et al. [4] previously investigated inspiratory 
phonation. They reported acoustic and physiologic 
characteristics of inspiratory phonations associating the AI 

perturbations with the number, intensity, duration and 
fundamental frequency of the inspirations. However, the 
way these characteristics interact when modeling the 
perception of this type of perturbation requires further 
research. A better understanding of the interaction between 
these features can lead to automatic acoustic measurements 
with great benefit to research, assessment and 
rehabilitation. Such measurements require automatic 
segmentation techniques that are challenged by the 
complexity of the disordered speech. 
This research is focused on developing fully automated 
segmentation techniques and multivariable models of the 
perception of AIs aiming to provide a source of reference to 
clinicians.  

2 Materials and methods 

This research consisted in two main sections: the detection 
of AIs in continuous speech with independence of the text 
spoken and the modeling of the acoustic perception of AI 
perturbations. The work relied on the analysis of 
pathological voices from three databases. The 
Massachusetts Eye and Ear Infirmary Voice database 
(MEEI) [9] and two motor speech disorders databases 
reported  in [10] and [11].  
The first 350 pathological voices from the MEEI database 
were used to develop the segmentation algorithm. This 
database provided utterances from a wide variety of 
organic, neurological, traumatic and psychogenic voice 
disorders. All subjects studied recorded a fragment of the 
"Rainbow" passage [13] containing 12 seconds of 
continuous speech. 
The other two databases were used to automatically assess 
the perception of AI perturbations manifested in utterances 
from subjects with different types of dysarthria. Both 
databases contained utterances with fragments of the 
passage “The Grand Father” [13]. The recordings were 
made by subjects undergoing several types of dysarthrias 
among which are: Parkinson disease (PD), amyotrophic 
lateral sclerosis (ALS), organic voice tremor (OVT), chorea 
(HC), dystonia (HD), flaccid dysarthria, spastic dysarthria 
(SD) and ataxic dysarthria (AD). A total of 108 disordered 
utterances and 19 normal speech recording were processed 
from these databases. 
The method followed to develop the segmentation 
algorithm was based on the derivation of time-frequency 
characteristics of the inspiratory phonation from a detailed 
analysis of the data. The performance of the automatic 
algorithm was compared to a manual segmentation 
conducted by the researchers. All selected utterances from 
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the MEEI database were listened and transcribed denoting 
the number, position and intensity of the inspirations. All 
inspirations were classified in normal or pathologic 
according to an intensity-based threshold derived 
heuristically from normal AI levels. The performance was 
evaluated considering the correct detection, false 
acceptance and false rejection indexes. 
The modeling of the acoustic perception of AI perturbations 
was implemented on the motor speech disorder databases. 
All utterances were processed manually and automatically 
as performed in the first part. Four acoustic measurements 
were derived from the segmented inspirations and 
correlated with the judgments provided by three speech 
language pathologists. Different linear combinations of the 
acoustic measurement were studied to model the perception 
of the AI perturbations.  
All participating judges had five or more years of 
experience working with disordered speech [8]. The 
perceptual assessment was performed in a scale equally 
spaced with 0 corresponding to normal inspirations and 6 to 
excessive amount of perturbation. The average perception 
of the judges was selected to evaluate the performance of 
the automated algorithm.  

3 Characterization of AIs 

The characteristics of AIs were studied in the time and 
frequency domains to produce observations that identify the 
inspirations in continuous speech.  

3.1 Time-domain characterization 

The time-domain characteristics of AIs exhibit three main 
phases (see Fig. 1a): 

Phase 1- The time interval between the inhalation of 
air starts and the constricted area begins to vibrate. 
This is typically the only phase that occurs in normal 
inspirations. In this phase the air is inhaled in a 
controlled way with normal pressure in the constricted 
area. The acoustic waveform is semi-periodic with high 
noise level.  

Phase 2- The time interval when the constricted area is 
vibrating. In this interval, the pressure in the constricted 
area drops causing vibration. The waveform of this 
phase resembles a periodic signal with low fundamental 
frequency and a reduced amount of noise with respect to 
previous phase. 

Phase 3- The time interval between the constricted area 
stop to vibrate and the inhalation of air stops. This 
phase is similar to phase 1. It occurs when the vibration 
stops due a reduction of the air stream.  

AIs are segments of speech that commonly occur at the 
end of words or phrases, when the volume of air in the 
lungs is insufficient. The intensity of AIs depends on the 
amount of air inhaled, the physical constriction of the 
airway and the air stream force.  Softer inhalations require 
more time to replenish the lung capacity than more intense 
ones. This results in longer phase 1 and 3 but a shorter 
phase 2 with lower intensity. Stronger inhalations have 
short phase 1 and 3 with longer phase 2 characterized by 
high intensity and low noise levels.  

Fig. 1b shows the contour of the RMS intensity signal of a 
typical AI. It reflects an initial low intensity corresponding 
to phase 1, followed by an average intensity increment 
associated to phase 2 succeeded by a decrement on 
intensity again due to phase 3.  
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Fig.1 a) Typical AI waveform. b) RMS oscillogram 

obtained with 30ms frames and 66.6% overlap. 

Previous time-domain characteristics were used for 
automatic detection of AIs in continuous speech. A sonority 
analysis was used to identify the segments between words 
with higher chances to host AIs. This analysis was 
performed based on correlation, energy and zero crossing 
criteria [8] relying on 30ms frames overlapped 20ms.  
Although time-domain analysis is effective to detect AIs, 
there are other types of sound uttered in continuous speech 
that have similar characteristics. This is the case, for 
instance, of some types of monosyllables and syllables with 
fricative consonants. However, these types of sound can be 
effectively differentiated in the frequency domain. 

3.2 Frequency domain characterization  

The following observations were consistently present in the 
spectrum of typical AIs: 

 There is an absence of harmonic structure when the 
intensity of the inspiration is weak. A main frequency 
and a couple of harmonics can occur in strong 
inspirations but it doesn’t have a well-defined 
harmonic structure. 

 In the inverse LPC spectrum: (a) there is a resonance 
in the 1200-2700 Hz band, (b) one or two other 
resonances can be present in the 3-4.4 kHz band, (c) 
no resonance can occur in the 500-1200 Hz band, and 
(d) a resonance in the band below 500 Hz can occur in 
very loud AIs (see Fig. 2).  
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Fig.2 Spectral magnitude response of the inverse 
LPC filter modeling the vocal tract during AIs. 

Acoustics 08 Paris

6305



 

 
 There is a high ratio between the first spectral 

resonance and the second measured with respect to the 
middle trough (more than 13 times). 

 The spectral magnitude of the band above 5 kHz is 
smaller than the band below (fricative sounds have 
opposite spectral magnitudes in these bands). 

4 AI segmentation algorithm 

The AI segmentation is based on a combination of time and 
frequency characteristics. The algorithm is implemented as 
follows: 

a. Locate the segments that are candidates to have AIs 
using sonority analysis (marked with lighter color in 
Fig. 3). These segments are located in long unvoiced 
intervals between words.  

b. Split such segments into 30ms frames overlapped 
20ms to obtain a vector of RMS values. The RMS 
vector is smoothed with an averaging filter of 7 
samples. 

c. Obtain the 40 percentile of the RMS vector to 
estimate the lower threshold required to detect the 
starting trough of the AIs. Troughs below this 
threshold are candidates to be the starting point of 
the AI segment. 

d. Obtain the 80 percentile of the RMS vector 
containing only voiced segments (darker color in 
Fig. 1). This is necessary to estimate the upper 
threshold required for discarding voiced segments 
incorrectly detected as unvoiced (i.e. first segment 
marked with lighter color in Fig. 3).  

e. Detect peaks in the RMS signal between the upper 
and lower thresholds having adjacent troughs below 
the minimum threshold. The duration of the segment 
must be longer than a minimum inspiration length of 
250ms (heuristically determined from data). 

f. Find the ratio between the central peak and the first 
trough. AIs exhibited a range between 1.5 and 17. 
These values were obtained from a detailed analysis 
of the acoustic data studied. 

g. Obtain the average RMS value of the segment 
calculated between each adjacent trough and 
compare it to a global low-magnitude threshold. 
This threshold discards AI segments with low 
intensity (non-audible). This threshold was set at 
0.0020 based on data analysis.  

The segments meeting the previous criteria can still include 
sounds with time-domain characteristics similar to AIs. The 
frequency domain analysis is used to extract the AIs only. 
The spectral analysis is performed through the following 
steps: 

h. Apply a pre-emphasis filter and estimate the inverse 
linear prediction spectrum. 

i. Verify that: there isn’t any resonance in the 500-
1200 Hz band of the spectrum, there is a resonance 
in the 1200-2400 Hz band and 1 or 2 resonances in 
the 2400-4000 Hz band. 

j. Determine that the ratio between the first and second 
resonances is greater than 13 when estimated with 
respect to the middle though. 

k. Estimate the spectrum of the utterance and 
determine that the harmonic structure only contains 
the main resonant frequency and one or two 
harmonics.  

l. Verify that the ratio of the band below and over  
5 kHz is greater than unity. 

Fig. 3 shows a processed utterance highlighting the detected 
AIs and the segments where the inspirations were searched 
using the previous algorithm.  
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Fig. 3 Results of the AI segmentation algorithm. Unvoiced 
segments are highlighted and the detected AIs are labeled. 

5 AI perception index 

Four measurements were selected to model the perception 
of AI perturbations: the number of audible inspirations 
(NAI), the ratio between the maximum peak and the left 
trough from the RMS signal (as calculated in the detection 
algorithm, P/D), the duration of the inspiration (DAI) and 
the average RMS magnitude of the AI segment (AIrms). The 
measurements and all possible linear combinations of them 
were submitted to statistical analyses to model the average 
perceptual judgments.  

6 Analysis and results  

6.1 MEEI database 

The utterances of the MEEI database were analyzed 
manually and automatically. Table 1 shows a summary of 
the segmented inspirations with both methods. 

Method Number 
of detected 
segments 

False 
Acceptance 

(%)  

False 
Rejection 

(%) 

Correctly 
Detected   

(%) 
Manual 672 0 (0) 0 (0) 672 (100)

Automatic 624 77 (11.46) 32 (4.8) 547 (81.39)

Table 1 Summary of AI segmentation methods. 
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The automatic segmentation algorithm detected 624 AI 
segments of a total of 672 annotated manually. A fraction 
of the detected segments (29) corresponded with actual 
inspirations considered with normal intensity level in the 
manual assessment. A total of 48 segments did not 
correspond to segments containing inspirations and 32 
inspirations were not detected. The total accuracy of the 
automatic segmentation was 81.39%.  
A further analysis on the missing segments denoted that the 
decision of the segmenter was sometimes affected by low 
signal-to-noise ratio and the occurrence of non-AI-related 
acoustic perturbations. In many of those cases, the main 
source of error was caused by the voicing algorithm. Some 
of the extremely severe AIs were also occasionally missed 
because they sometimes presented longer than normal 
voiced segments or intensity levels beyond the thresholds 
estimated. The results, however, suggested that the 
algorithm is effective detecting AIs in continuous speech.  

6.2 Dysarthria database 

The performance of the objective algorithms was evaluated 
with the acoustic recording available in the dysarthria 
databases. The segmentation algorithm detected 222 AI 
segments in 127 utterances studied. The manual evaluation 
implemented by the researchers highlighted 254 AI 
segments. The segmentation accuracy achieved with this 
database was 87.41%.  
The acoustic measurements described in section five were 
extracted from the segments located automatically. The 
number and position of the inspirations that influenced the 
judges’ perception were not available for these databases. 
Therefore, the performance criteria when modeling the 
perception of AI perturbations was based on the correlation 
coefficient between the objective measurements and the 
average perceptual judgments (average correlation among 
judges was 86.7%). Table 2 shows the performance of each 
objective measurement. 

Indicators NAI P/D DAI AIrms 
R 0.796 0.474 0.681 0.625 
P values <0.001 <0.005 <0.001 <0.001 

Table 2 Correlation analysis between measurements and 
perceptual judgments. 

NAI accounted for the largest percent of the data variability 
(79.6%) followed by the mean duration and intensity 
measurements ranging between 62% and 69%. The P/D 
measurement, however, did not account for a significant 
percent of the targeted data.  
The results of the multivariable analysis are shown in Table 
3. Only linear combinations of the variables were 
considered to prevent overfitting the datasets. Non-linear 
methods can provide better results but often are less 
generalisable to new acoustic data. The analysis 
implemented relied on “Best Subsets Regression Analysis” 
[12] which generates models formed with linear 
combinations of all variables. The maximum correlation 
criterion was used to select the models providing the best 
performance. The models were evaluated with four types of 
statistics:  

(1) Correlation coefficient (R): described the proportion 

of the data variation explained by the measurements 
integrating the model (a magnitude closer to one indicates 
higher correlation between the model output and the 
target data). 
(2) Adjusted correlation coefficient (Radj): a modified 
version of R that has been adjusted for the number of 
variables composing the model  [14].  
(3) Mallows’ statistic (C-p): the addition of the fitted 
response values divided by the variance of the model’s 
error term (a magnitude closer to the number of variables  
in the model indicates higher performance).  
(4) Standard deviation (S): reflects the estimated standard 
deviation of the model’s error term (a smaller magnitude 
indicates higher performance).  

The statistics R is useful to compare models of the same 
order and Radj, C-p and S statistics are useful to compare 
models of different orders [14]. 

ID Model 
Order

Performance  
Indices 

Acoustic 
Measurements 

  R Radj C-p S NAI P/D DAI AIrms 

1 1 0.796 0.794 9.9 0.941 X    
2 1 0.681 0.676 71.7 1.139   X  
3 1 0.625 0.621 98.2 1.215    X 
4 1 0.474 0.470 158.6 1.370  X   
5 2 0.812 0.808 3.1 0.914 X  X  
6 2 0.810 0.807 3.9 0.916 X   X 
7 2 0.800 0.796 9.7 0.937 X X   
8 2 0.691 0.685 68.6 1.120   X X 
9 3 0.814 0.809 3.8 0.912 X  X X 
10 3 0.812 0.807 4.7 0.915 X X X  
11 3 0.810 0.805 5.9 0.919 X X  X 
12 3 0.699 0.689 67.0 1.122  X X X 
13 4 0.815 0.808 5.0 0.913 X X X X 

Table 3 Best subsets regression analysis of AI data. 

The second-order models conformed by NAI-DAI and 
NAI-AIrms achieved similar correlation indexes. This 
indicated that the duration and intensity of the inspirations 
could be contributing redundant information. This was 
verified and later explained by the high correlation found 
between the two measurements (0.818). 
Model 7 composed by NAI-DAI-AIrms had the highest Radj, 
the C-p index closer to the number of variables, and smaller 
standard deviation. However, this model didn’t provide a 
significant improvement over other multivariable models.  

 
Fig. 4 Plot of PJs versus AIidx index. 
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Fig 4 shows the plot of the judgments made with this model 
versus the PJs (AIidx = -0.087+0.414 NAI+0.00971 DAI+ 
42.3 AIrms). The continuous line indicates a linear trend 
between both methods. A linear relationship appears 
between both methods but certain disagreement is observed 
in the lower scale values. This reflects mismatches in the 
low-level threshold calculated with the algorithm and the 
natural threshold used by the judges. 
Fig. 5 shows the judgments obtained with the algorithm 
AIidx for each type of disorder included in the databases. It 
is observed that FD and ALS groups have higher mean 
scores (similar results were observed on the perceptual 
analysis). Other groups such as: SD, HD, HC and HO also 
present cases with high scores, which are expected since 
AIs have also been reported in these groups [3]. This is 
consistent with the analysis reported in [1].  

 
Fig. 5 Performance of AIidx measurement. 

7 Conclusion 

This investigation studied the modeling of acoustic 
perception of AIs in disordered speech. A text-independent 
algorithm was developed to detect AIs automatically. The 
average segmentation accuracy of algorithm reported is 
84.4%. The segmenter relied on sonority analyses and time-
frequency characteristics to automatically extract the 
segments containing the inspirations.  
Different acoustic measurements were extracted from the 
segmented inspirations to model the perception of the 
speech perturbations caused by AIs. It was noted that the 
number, the duration and the intensity of the inspirations 
were relevant to the perceptual judgments performed by the 
three judges. NAI was the single-variable model that 
produced the highest correlation with respect to perceptual 
judgments followed by measurements of intensity and 
duration.  
Multivariable models evidenced higher descriptive capacity 
than single measurements, denoting that perceptual 
judgments are better modeled by the combination of 
multiple variables. This corresponded with the opinion of 
judges that based their evaluations on a combination of 
acoustics events perturbing normal prosodic patterns. The 
high-order models (orders 3 & 4) provided only modest 
performance improvement indicating that the second-order 
models are sufficient to represent the perception of AI 
perturbations. However, because the measurements of 
intensity and duration were needed for the segmentation 

stage, the model combining the three measurements (NAI-
AIRMS-DAI) was obtained at practically no extra cost. 
The multivariable model, AIidx, showed 80.9% correlation 
with respect to perceptual judgments, which is in the order 
of the correlation achieved among clinicians. Therefore, the 
model is an alternative reference judgment for clinicians 
when analyzing perturbation produced by AIs in 
pathological voices. 
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