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Theoretical studies on the dissipation and dispersion of sound in two-phase suspensions have been briefly 
reviewed. Previous studies on the sound attenuation in particle-laden flows under Stokesian drag and 
conduction-controlled heat transfer have been extended to accommodate the nonlinear drag and heat transfer. It 
has been shown that for large particle-to-fluid density ratio, the particle Reynolds number bears a cubic 
relationship with dωτ (where ω is the circular frequency and dτ the Stokesian particle relaxation time). This 
dependence leads to the existence of a peak value in the linear absorption coefficient occurring at a finite value 
of dωτ . Comparison of the predictions with the test data for the spectral attenuation of sound with water 
injection in a perfectly expanded supersonic air jet shows a satisfactory trend of the theory accounting for 
nonlinear particle relaxation processes. 
 

1 Introduction 

Sound attenuation in fluids, representing the dissipation of 
acoustic energy from a sound wave, occurs through a 
number of physical processes involving molecular 
viscosity, thermal conductivity, and other dissipative or 
relaxation processes [1, 2]. In all these absorption 
mechanisms, acoustic energy is converted into thermal 
energy, and other mechanisms deflect or scatter acoustic 
energy [1]. When a fluid contains inhomogeneities such as 
suspended particles (solid particles, drops and bubbles) 
additional viscous and heat conduction losses occur in the 
immediate neighbourhood of the suspended particles [1-3]. 
Referring to Fig. 1, The acoustic intensity I of a plane wave 
propagating through an absorbing medium is expressed by 

  xeII α−= 0  (1a) 

where x is the distance traversed, 0I is the intensity 
at 0=x , and α the linear absorption coefficient for the 
medium. The quantity α depends on viscosity, thermal 
conductivity, and other factors such as molecular 
relaxation. 
 

         
Fig. 1 Attenuation of a plane sound wave in a gas-droplet 
mixture. 
Recently data on sound attenuation in supersonic air jets 
containing suspended water droplets reveal that the linear 
absorption coefficient displays a spectral peak. The 
particulate relaxation models for the sound attenuation are 
all based on Stokes drag (linear drag law) and pure 
conduction limit (linear heat transfer), and do not account 
or explain this attenuation behaviour. This article attempts 
to investigate this attenuation behaviour by considering 
nonlinear drag and heat transfer laws applicable to 
relatively large-sized droplets.  

2 Review of Previous Work 

Stokes [4] developed the first successful theory of sound 
absorption due to the effect of molecular viscosity of the 
fluid (internal friction). Helmholtz [5] theoretically 
investigated the effect of viscosity on the sound attenuation 
in a circular tube, considering the effect of friction near 
solid boundaries. Kirchhoff [6] theoretically treated sound 
attenuation due to the viscosity and heat conduction effects 
in an unbounded fluid medium and in narrow tubes. The so-
called classical sound absorption in fluids includes Stokes’ 
viscous contribution and Kirchhoff’s thermal conduction 
contribution to attenuation in unbounded fluids. 
Sound propagation in aerosols and fog has been studied 
experimentally and theoretically by several investigators. 
The first (early) observations by Tyndall [7] for sound 
propagation in a fog were rather inconclusive. Lord 
Rayleigh [8] estimated the scattering effect of small 
spherical obstacles in a non-viscous atmosphere, and 
showed that the effect depends on the number of scattering 
particles and the ratio of their diameter to the wavelength of 
the sound.  
Sewell [9], in his pioneering work, theoretically considered 
the attenuation of sound in a viscous medium containing 
suspended cylindrical or spherical particles (obstacles) with 
perfectly rough surfaces. Sewell predicted the attenuation 
of sound by rigid particles suspended in a gas, assuming 
that the particles are immovable.  
Epstein [10], in a theoretical treatment of the attenuation of 
sound by spherical particles suspended in liquids or gases, 
derived and extended Sewell’s result by permitting the 
particles to move. The theory predicts attenuation of sound 
proportional to 2ω at very low frequencies, and 
approaching the values given by Sewell’s theory for very 
high frequencies. Epstein and Carhart [11] additionally 
considered heat conduction effects, and found that for fogs 
the effects of viscosity and heat conduction are both 
important, and approximately additive. The theory of 
Epstein and Carhart [11] consistently underpredicts the 
measurements of Knudsen et al. [12] for sound absorption 
by water droplets in air. 
The effect of transport processes on the attenuation and 
dispersion of sound in aerosols have also been reported by 
Soo [13], Chu and Chow [14] and Chow [15]. Soo [13] 
accounted for nonstationary effects including the Basset 
term and added mass terms. Chu and Chow [14] presented a 
theory for the dispersion of sound, which agrees with the 
data of Zink and Delgasso [16]. Chow [15] considered the 
attenuation of sound in dilute emulsions and suspensions 
with viscous dissipation and thermal conduction, and 
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additionally included the effect of surface tensions. It was 
shown that the effects of surface tension are negligible for 
systems with solid particles or liquid droplets, but are 
important in the case of bubbly mixtures. Nonstationary 
effects, which become important at low particle Reynolds 
numbers, are further investigated by Gumerov [17]. 
The preceding theories are similar in the sense that the 
calculation of the acoustic field around the particles is 
determined by computing the potential of additional waves 
that appear when a plane wave falls upon a spherical 
obstacle (the so-called scattering approach). The attenuation 
of sound is then computed by considering the entropy 
increase owing to irreversible momentum and heat transfer 
between the droplet and the gas. 
Temkin and Dobbins [18], in their classical work, 
theoretically considered particle attenuation and dispersion 
of sound in a manner which illustrates explicitly the 
relaxation character of the problem. The linear droplet drag 
and heat transfer are respectively obtained from  

  ( )gpgp uuF ′−′= πμ6  (2a) 

  ( )gpgpp TTkdQ ′−′= π2  (2b) 

which correspond to the zero droplet Reynolds number 
limit ( 0Re →p ), where 

 pRe = gppgg duu μρ /−  (2c)  

In the above, u is the velocity, T the temperature, ρ the 
density, μ the dynamic viscosity, k the thermal 
conductivity, and d the diameter. The subscripts g and 
p stand respectively for the gas and the particle, and the 

primes denote fluctuations from the mean. The properties 
ggg k,, μρ and pρ refer to the mean values.  

At low mass concentrations 1/0 <<= gpm mnC ρ , the 
theory of [18] yields 
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In the above equations, pc refers to the specific heat, 

ggpg kc /Pr μ= the Prandtl number of gas, 0c the speed of 
sound in the gas phase, γ the isentropic exponent (specific-
heat ratio), 0n the mean number of particles per unit 
volume of mixture, and pm the mass of one particle. The 
quantity α refers to the attenuation per unit frequency per 

unit mass fraction, and β the dispersion coefficient. 

 
Fig. 2 Absorption coefficient per unit frequency for dilute 
suspensions according to Temkin and Dobbins [18]. 
 
Fig. 2 displays the absorption coefficient α (scaled by 
wavelength) as a function of dωτ , as given by Eq. (3a) due 
to Temkin and Dobbins [18] for water droplets in air 
( 840/ ≈gp ρρ ). The individual contributions due to 
particle drag and heat transfer on sound absorption are of 
the same order of magnitude, with the heat transfer 
contribution somewhat greater than the drag contribution. 
The theory agrees well with the data of [16, 19]. The 
quantity α is very small for 1<<dωτ  and 1>>dωτ , and 
becomes important at intermediate frequencies with a 
spectral peak at 1≈dωτ . This trend is generally 
characteristic of sound attenuation in fogs, clouds, and 
artificially produced smokes. 

For of 1<<dωτ , the particles very rapidly adapt to changes 
in the fluctuations of the carrier fluid (flowfield) and move 
almost in equilibrium with the gas (particles follow the 
fluid motion perfectly). In the other extreme case 
of 1>>dωτ , Stokes linear drag law is not strictly 
applicable, as alluded to in Temkin and Dobbins [18], and 
particles are scarcely disturbed by the gas fluctuations. 
Under such circumstances, the particles remain almost 
fixed in space, and the gas executes oscillations around the 
particles. According to Temkin and Dobbins [18], Stokes 
linear drag law can be justified for 10 ≈≤ dωτ , provided 

that 1/ <<pg ρρ  and ( ) 18/
2/12 <<gpd νω . 

Following Temkin and Dobbins [18], limited to the case of 
an inert dispersed phase, Marble and Wooten [20] studied 
sound attenuation in a condensing vapor. It is shown that 
under some important circumstances, the effects of 
condensation and vaporization dominate the damping 
mechanism. Marble and Candler [21] studied sound 
absorption due to liquid droplet vaporization. Propagation 
of acoustic waves in a two-phase vaporizing and reacting 
media were treated by Dupays and Vuillot [22]. 

3 Present analysis 

The present analysis extends the work of Temkin and 
Dobbins [18] for dilute suspensions to accommodate the 
nonlinear drag and heat transfer laws, which become 
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important at high particle Reynolds numbers pRe and at 
high frequencies. Only sound attenuation is considered 
here, with sound dispersion excluded from consideration. 

3.1 Nonlinear particle drag and heat 
transfer 

Without any loss of generality the attenuation of sound for 
large particle Reynolds numbers with nonlinear particle 
relaxation may be expressed by relations similar to Eq. (3a) 
as follows: 
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Here the relaxation times 1dτ and 1tτ correspond to the 
relaxation times under nonlinear drag conditions (generally 
representative of large-sized particles). They are related to 
the Stokesian relaxation times by the relations 
 

   ( ) ( )pttpdd Re,Re 2111 ψττψττ ==   (5a) 

where ( ) ( ) NuNuCC pDDp /Pr,Re,/Re 1211 == ψψ  (5b) 

with 1DC standing for the nonlinear drag coefficient, and 

1Nu for the nonlinear heat transfer. The drag coefficient and 
the Nusselt number in Eq. (5b) are defined by 

  gpggpgDD kdhNuudFC /,
4

/2 22 =⎟
⎠
⎞

⎜
⎝
⎛= πρ  (5c) 

where gh refers to the gas-droplet convective heat transfer 
coefficient. 
  A good approximation (curve fit) for the drag 
coefficient 1DC is recommended as [23] 
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The first term on the RHS of Eq. (6) is the Stokesian drag 
coefficient defined by 

  pDC Re/24=  (7) 

which is valid for particle Reynolds numbers less than 
about one. Eqs. (5a) and (5b) yield an expression for 1ψ as 
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  With regard to the particle heat transfer, a good 
correlation for heat transfer (by conduction and convection) 
is expressed by the well-known Ranz-Marshall correlation 
[24] 

   33.05.0
1 PrRe6.02 pNu +=  (9) 

In the pure conduction limit, we have 2=Nu , so that the 
function 2ψ in Eq. (5b) becomes 

   33.05.0
12 PrRe3.01/ pNuNu +==ψ  (10) 

 

It now remains to find a relation for the droplet Reynolds 
number pRe in terms of the density ratio and the particle 
relaxation time. 

3.2 Droplet Reynolds number 

The determination of particle Reynolds number required in 
the evaluation of the functions 1ψ and 2ψ in Eqs. (8) and 
(10) respectively is exceedingly complex. There exists 
relatively little information on the dependence of particle 
Reynolds number on the particle characteristics in two-
phase flows. A study of turbulent diffusion of droplets in a 
gaseous medium [25, 26] based on Tchen’s theory [27], 
indicates a plausible relationship of the form 

  ( )dpgp f ωτρρ ,/Re =  (11) 

Since Eq. (4) is applicable to large particle to fluid density 
ratios, we postulated here that the particle Reynolds 
number depends only on the particle relaxation time, and is 
independent of the particle to fluid density ratio: 

  ( )dp f ωτ=Re  (12) 

In the present investigation, the following power law 
relation is proposed such that a peak in the linear 
absorption coefficient (as indicated by the measurements) is 
realized (an exponent of 2.5 or greater for the relaxation 
time ensures this peak): 

  ( )3Re dp c ωτ=  (13) 

The adjustable constant c is determined from a correlation 
of the theory with the test data. A value of 10=c is found 
to be satisfactory based on the data of Norum [28] for water 
droplets in a supersonic air jet. 

4 Results and comparison 

4.1 Effect of Nonlinear Particle 
Relaxation 
 
The effect of nonlinear particle relaxation on the absorption 
coefficient per unit frequency is demonstrated in Fig. 3a for 
comparison with the theory of Temkin and Dobbins [18] for 
dilute concentrations. The results suggest that below 

7.0≈dωτ  the nonlinear particle relaxation effects are seen 
to be unimportant. Beyond 7.0≈dωτ , the nonlinear theory 
departs from the linear theory. 
 
Fig. 3b shows a comparison of the predicted linear spectral 
attenuation of sound under nonlinear particle relaxation. 
The theoretical result by Temkin and Dobbins [18] for 
dilute concentrations is also presented for a comparison. 
The theory suggests that at high frequencies the linear 
absorption coefficient predicted by the linear theory 
decreases with increasing frequency in accordance with 
experimental trend for large particle sizes. 
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Fig. 3a Predicted absorption coefficient per unit frequency 
with nonlinear particle relaxation processes. 
 

Fig. 3b Predicted linear absorption coefficient with 
nonlinear particle relaxation processes. 

4.2 Comparison with experimental data 

A direct comparison of the present theory with the 
measured spectral attenuation by Norum [28] for water 
droplets in a perfectly expanded (jet exit pressure equals the 
ambient pressure; thus shock-free) supersonic jet is 
displayed in Fig.4. The data correspond to hot supersonic 
jet of air from a convergent-divergent (CD) nozzle 
operation at a jet total temperature 867=tT K, and a jet 
exit Mach number jM =1.45. The jet Mach number is 

defined as jjj cuM /= , where the subscript j refers to the 
nozzle exit conditions. The mass flow rate (maximum 
considered) of water to that of the jet is about 0.85. The 
angle θ is measured from the jet inlet axis. The jet exit 
Reynolds number gjjjj du μ/Re 1 = is about 1.3x106, 

where jd is the jet exit diameter. At this condition, 
supersonic turbulent jet mixing noise [29, 30] dominates 
upstream noise radiation, and Mach wave radiation [31] 
dominates the downstream noise radiation. In the data, 
water is injected at 45 deg. The data include spectra 
measured at angles of 45 deg, 90 deg and 135 deg, thus 
highlighting directivity effects.  
 

From the measured SPLΔ (reduction in Sound Pressure 
Level) at a given frequency due to water injection, the 
linear absorption coefficient is deduced as 
 
  maxmax SPL/SPL/ ΔΔ=αα  (14) 
 
where the subscript refers to the peak spectral reduction.  
 
The comparisons suggest that the proposed theory based on 
the nonlinear particle relaxation processes satisfactorily 
describes the measurements for the spectral attenuation of 
sound, indicating a spectral peak.  The inclusion of 
directionality effect (dependence on the angle of 
observation) on the spectral absorption is beyond the scope 
of the present work. 

 
 
Fig. 4 Comparison of the predictions for the linear 
absorption coefficient with test data of Norum [28]. 
 
The spectral behavior shown in Fig. 4 is also noted in the 
experiments of Krothapplai et al [32] and of Castelain et al. 
[33] on sound attenuation with microjet injection (with low 
mass flow rates of water of the order of 10 percent of the jet 
mass flow rate). Some related experimental data on sound 
suppression with water injection include those of Zoppellari 
and Juve [34]. 
 
It should be remarked, however, that the data on supersonic 
jet noise considered here for comparison are not directly 
pertinent to plane waves of sound for which the theory has 
been developed. Since noise from turbulent jets may be 
regarded as a superposition of plane waves of differing 
frequency, the absolute values of the absorption coefficient 
in the test data could be different from that expressed by the 
theory. Finally, the effect of droplet evaporation on the 
spectral attenuation of sound, as indicated by the theory of 
[22], is left out of account in the present analysis. 
 

5 Conclusion 

The theory proposed here for sound attenuation in dilute 
suspensions with nonlinear particle drag and heat transfer is 
shown to satisfactorily represent the test data for noise 
reduction with water droplets suspended in a supersonic jet. 
It is found that the nonlinear particle relaxation processes 
are primarily responsible for reduction in the linear 
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absorption coefficient at high frequencies. Extended 
comparisons are needed to further validate this finding. 
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