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A general theoretical approach to the development of zero-thickness shell models for contrast agent 
microbubbles, which allows the testing of different rheological laws for encapsulation, is proposed. Based on 
available experimental data, analysis of the rheological behavior of a lipid shell is made. The problems of 
existing shell models, such as the dependence of shell parameters on the initial bubble radius and the 
“compression-only” behavior, are discussed and new theoretical models for their simulation are offered. In 
particular, it is shown that the inclusion of nonlinear shell viscosity allows one to model the “compression-only” 
behavior. It is also very important to select an appropriate rheological law describing the dependence of the shell 
viscosity on the shear rate. A correct choice can reduce considerably the spread of the experimentally estimated 
values of the shell parameters and eliminate their unnatural dependence on the initial bubble radius. 

1 Introduction 

Encapsulated gas microbubbles are used in ultrasound 
medical applications as contrast agents to enhance the 
acoustic contrast between blood and surrounding tissues 
and thereby to improve the quality of ultrasonic images. 
The function of encapsulation is to stabilize microbubbles 
against fast dissolution and coalescence. Currently available 
contrast agents are enclosed in a shell of albumin, polymer, 
or lipid. The present study focuses on lipid-shelled 
microbubbles.  
Proper theoretical description of the rheological behavior of 
the shell material is of primary importance as it is the shell 
that determines many of the functional properties of 
contrast agent microbubbles. Much work has been done on 
modeling the dynamics of encapsulated microbubbles in an 
ultrasound field [1-5]. However, existing shell models 
cannot explain recent experimental observations, such as 
“compression-only” behavior and the dependence of shell 
parameters on the initial bubble radius. 
The “compression-only” behavior of phospholipid-coated 
bubbles was discovered by de Jong et al. [6]. In the course 
of an optical ultra high-speed contrast imaging study on 
individual SonoVue and BR-14 microbubbles, they 
observed that in some cases the microbubbles only 
compressed and hardly expanded beyond their initial 
diameters. Pertinent numerical simulations were carried out 
using the shell model of de Jong et al. [1]. By comparing 
the experimental data with the simulations, it was 
concluded that a more sophisticated shell model is required 
to explain the effect of “compression-only” behavior.  
The findings that the shell viscosity of phospholipid-coated 
microbubbles increases with the initial bubble radius were 
reported by Morgan et al. [3] and more recently by van der 
Meer et al. [7]. Chetty et al. [8] report that the shell 
elasticity seems to behave similarly. In the present paper, 
we confirm these findings by means of our own 
experimental data. The result that the shell parameters are 
found to be highly dependent on the initial bubble radius is 
of particular interest as it discloses that the current shell 
models meet with difficulties of fundamental nature. It is 
clear that physical constants of a material must be 
independent of the amount of the material. Therefore it is 
appropriate to suggest that in actual fact the said behavior 
of the shell viscosity and elasticity is an artifact that arises 
from an inadequate description of the rheological nature of 
the encapsulating coating.  
The purpose of the present study is to develop new 
theoretical models that are able to account for the observed 
experimental effects.  

2 Zero-thickness shell model  

We begin with the derivation of a general equation for the 
radial dynamics of a thin-shelled microbubble that provides 
a way of testing different rheological laws for 
encapsulation. The most theoretically justified equation of 
the radial dynamics of an encapsulated bubble is Church’s 
equation [2]. It can be written as follows 
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where 1( )tR  and 2( )tR  are the inner and the outer radii of 
the encapsulating shell, the overdot denotes the time 
derivative, 1L Sβ ρ ρ= − , Lρ  and Sρ  are the 
equilibrium densities of the surrounding liquid and the 
shell, 0gP  is the equilibrium gas pressure within the 
bubble, γ  is the ratio of specific heats of the gas, 10R  and 

20R  are the inner and the outer radii of the shell at rest, 1σ  
and 2σ  are the surface tension coefficients for the gas-
shell and the shell-liquid interfaces, Lη  is the shear 
viscosity of the liquid, 0P  is the hydrostatic pressure in the 
liquid, and ( )ac tP  is the driving acoustic pressure. The 
effect of encapsulation is described by the term S  which is 
given by 
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where r  is the radial coordinate of a spherical coordinate 
system with the origin at the center of the bubble, and 

( , )rr r tτ  is the radial component of the stress deviator of 
the shell.  
Equation (1) is valid for bubbles with a shell of finite 
thickness. However, most types of contrast agents have 
very thin shells. This is especially true for lipid-coated 
bubbles. For such bubbles, Eq. (1) is redundant from the 
numerical point of view, and going to the limit of thin shell 
is worthwhile. In the limit of thin shell, Eq. (1) reduces to 
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where ( )R t  denotes the radius of the gas-liquid interface, 

0 (0)R R= , and σ  is the surface tension at the gas-liquid 

interface. In the same limit, the term S  becomes  

 
3 ( , )rr r RS r t
R
ε τ == −  (4) 

with ε  denoting the shell thickness. Substituting different 
expressions for rrτ  into Eq. (4), one can apply different 
rheological laws to the bubble shell. This equation shows 
how existing constitutive equations for the stress tensor 

 i jτ , which are normally specified in the bulk form, can be 
correctly recast to a surface form required in Eq. (3).  

3 Rheology of lipid encapsulation  

The purpose of this section is to explain why existing shell 
models cause the shell parameters to be dependent on the 
initial bubble radius. By way of example let us consider the 
widely used shell model proposed by de Jong et al. [1]. It 
can be represented as [7]  

 ( )2
04 4 1 1SS R R R Rκ χ= + −& , (5) 

where Sκ  is the shell surface viscosity and χ  is the shell 
surface elasticity. In a qualitative sense, the de Jong model 
is identical to the Church model [2, 5], based on the Kelvin-
Voigt constitutive equation, and the Sarkar model [4]. 
To evaluate the shell parameters appearing in Eq. (5), 
experimental radius-time curves for twenty microbubbles of 
various radii were used. The curves were acquired for a 
home-made phospholipid-coated contrast agent similar to 
Definity® [9], insonified with a 20-cycle, 3.0 MHz, 100 
kPa acoustic pulse. The shell parameters were evaluated by 
fitting simulated radius-time curves to the experimental 
data by the least squares method. The best-fit values of Sκ  
and χ  versus the initial bubble radius are shown by circles 
in Figs. 1(a) and 1(b), respectively. Each circle represents 
the best fit for one experimental curve. The solid lines show 
the linear regression for the best-fit values. It is seen that 
both the shell viscosity and the shell elasticity demonstrate 
a conspicuous increase with the initial bubble radius.  
Van der Meer et al. [7] hypothesized that in reality the 
observed dependence of the shell viscosity on the initial 
bubble radius is a consequence of the fact that the shell 
viscosity is dependent on the shear rate, which is 
proportional to R R&  in our case. Figure 2(a) confirms this 
hypothesis. It shows the dependence between the shell 
viscosity and the maximum shear rate for the experimental 
data considered. The shell viscosity was evaluated by the de 
Jong model, as in Fig. 1(a), and the maximum shear rate, 
which is estimated as the maximum value of R R& , was 
calculated directly from the experimental radius-time 
curves. One can see that the shell viscosity decreases as the 

 
Fig.1 Best-fit values of the shell viscosity and elasticity 
versus the initial bubble radius for the de Jong model.  

 
Fig.2 (a) Shell viscosity versus maximum shear rate.  

(b) Shell elasticity versus deformation strength. 

shear rate increases. This type of rheological behavior is 
known as shear thinning. Thus Fig. 2(a) suggests that the 
lipid coating is a shear-thinning material and hence the 
observed dependence of Sκ  on 0R  is seeming. It arises 
because the de Jong model does not take into account the 
real rheological nature of the shell viscosity.  
A more physical picture of the behavior of the shell 
elasticity can be obtained by plotting χ  as a function of 
deformation strength. As a measure of the deformation 
strength, the quantity max 0 0( )R R R−  can be taken. The 
plot of χ  versus the estimated deformation strength is 
shown in Fig. 2(b). The values of χ  were evaluated by the 
de Jong model, as in Fig. 1(b), and the quantity 

max 0 0( )R R R−  was calculated directly from the 
experimental radius-time curves. Figure 2(b) reveals that 
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the shell elasticity decreases as the deformation strength 
increases. This rheological effect is known as strain 
softening. Thus there is reason to believe that the lipid 
coating has the properties of both shear-thinning and strain-
softening material. Therefore the theory for the shell 
elasticity should be revised as well.  
In currently existing shell models, the viscous and the 
elastic shell terms have the simplest possible form, namely, 
the linear form. This linear theory assumes that the viscous 
and the elastic stresses acting inside the lipid shell are 
proportional to the shell shear rate and the shell strain, 
respectively, with constant coefficients of proportionality 

Sκ  and χ . The analysis presented here shows that a more 
general, nonlinear theory for both the viscous and the 
elastic shell terms is required. In what follows, the 
nonlinear theory for viscous stress will be considered. 
Theory for elastic stress will be given elsewhere.  

4 Nonlinear viscosity  

4.1 General theory 

In the general case, the relationship between the viscous 
stress tensor and the rate-of-strain tensor is written as [10] 

 ( )
  ( )vis

i j i jF vτ = , (6) 

where ( )
 
vis

i jτ  is the viscous stress tensor, F  is an arbitrary 

function, and  i jv  is the rate-of-strain tensor. Actually, the 
viscous stress tensor can be also dependent on other 
kinematic quantities in addition to the rate-of-strain tensor, 
such as the deformation acceleration. However, if we want 
to adhere to simple models as far as possible, Eq. (6) should 
be considered as a next step as compared to the linear 
viscous term in Eq. (5). In the mathematical basis of 
rheology [10], it is proven that, according to the so-called 
principle of material objectivity, if the material is isotropic 
and incompressible, Eq. (6) must be of the following form: 

 ( )
 1 2 3  2 2 3   2 ( , ) 4 ( , ) vis

i j i j i k k jI I v I I v vτ η η= + , (7) 

where summation over double indices is implied, and 1η  

and 2η  are arbitrary functions of the second and the third 

invariants of  i jv . 2I  and 3I  can be specified as  

 2   3    ,      i k k i i k k j j iI v v I v v v= = . (8) 

For an encapsulated bubble, in view of spherical symmetry, 
Eq. (7) takes the form 

 ( )2( )
1 2 3 2 2 32 ( , ) 4 ( , ) vis

rr rr rrI I v I I vτ η η= + , (9) 

with  
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Here, it has been used that rrv v r= ∂ ∂ , where ( , )v r t  is 
the radial component of the particle velocity inside the 
shell, given by 2 2v R Rr−= &  [2, 5].  

Let us now assume that the total stress tensor ( , )rr r tτ is 
given by an equation similar to the Kelvin-Voigt 
constitutive equation but with a viscous part specified by 
Eq. (9), i.e.,  

 ( ) 2vis
rr rr S u rτ τ μ= + ∂ ∂ , (11) 

where Sμ  is the bulk shear modulus of the shell and 

( , )u r t  is the radial displacement inside the shell, given by 

( )2 2
0u R R R r−= −  [2, 5]. Then, using Eqs. (4) and (11), 

we obtain the term S  of Eq. (3) to be 
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where 3 Sχ εμ=  is the shell surface elasticity and κ  is a 

function of the quantity R R&  which can be treated as the 
shell shear rate. Theory cannot indicate a more exact form 
of the function ( )R Rκ &  in the case under consideration. 
The literature on rheology shows that the only way to 
determine an explicit form of ( )R Rκ &  is to select a 
suitable analytical function by using experimental data.  

4.2 Modeling of “compression-only” 
behavior  

As mentioned above, it has been found experimentally that 
many phospholipid-coated contrast agents show 
“compression-only” behavior, where the microbubbles 
compress much stronger than expand [6]. The de Jong shell 
model, Eq. (5), cannot simulate this phenomenon because it 
predicts the relative ratio of expansion to compression to be 
close to, or above unity [11]. In [6], it is hypothesized that 
the “compression-only” behavior may be a result of shell 
buckling. We will show here that this effect can be modeled 
in terms of nonlinear shell viscosity. It should be noted that, 
even if the “compression-only” behavior is really caused by 
shell buckling, formally mathematically, this effect can be 
modeled as a change in the shell properties, or, in other 
words, as a specific behavior of the shell, assuming that the 
shape of the bubble remains spherical. This way is 
acceptable because in fact we are interested in the scattered 
echo from the bubble rather than the radial bubble 
dynamics per se. Therefore, if we are able to approximate 
the scattered signal from a buckled bubble as if it were a 
signal from a spherical bubble with specific shell 
properties, it makes no difference whether the real bubble, 
as a source of the signal, is buckled or not.  

Let us assume that the function ( )R Rκ &  in Eq. (12) takes 
the form 

 0 1( )R R R Rκ κ κ= +& & , (13) 

where 0κ  and 1κ  are constants. For 1 0κ = , Eq. (12) 
reduces to the Kelvin-Voigt shell model. As an example, 
Fig. 3 shows two radius-time curves that were calculated by 
Eqs. (3), (12), and (13) for a bubble with 0 2.03R =  µm, 
insonified with a 6-cycle, 1.8 MHz, 100 kPa acoustic pulse. 
These parameters correspond to Fig. 2 in [6]. The curve in 
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Fig. 3(a) was calculated at 0.5χ =  N/m, 8
0 1.5 10κ −= ×  

kg/s, and 1 0κ = , i.e., that is a curve given by the Kelvin-
Voigt shell model. The curve in Fig. 3(b) was calculated for 
the same parameters except that 14

1 1.0 10κ −= ×  kg. One 
can see that this curve does show a response that is very 
much similar to the “compression-only” behavior, with 
sharp edges in the compression phase as reported in [6].  
Figure 4 represents results given by the Kelvin-Voigt model 
and the model with Eq. (13) when a simulated radius-time 
curve is fitted to one of our experimental radius-time curves 
showing “compression-only” behavior. An example of the 
experimental radius-time curve is displayed in Fig. 4(a). 
The curve was acquired for a phospholipid-coated bubble 
with 0R ≈ 1.4 µm. The bubble was insonified with a 20-
cycle, 3.0 MHz, 100 kPa acoustic pulse. Figure 4(b) shows 
the best fit that was obtained by the least squares method 
using the Kelvin-Voigt model ( 1 0κ = ). The solid line 
represents the simulated radius-time curve and circles 
indicate the experimentally measured points. Figure 4(b) 
corresponds to the part of the experimental curve in Fig. 
4(a) between 3 and 5 µs. The best fit given by the model 
with Eq. (13) is shown in Fig. 4(c). One can see that the 
application of Eq. (13) improves considerably agreement 
between the theoretical curve and the experimental data. 

4.3 Modeling of shear-thinning behavior  

Equation (13) allows one to model “compression-only” 
behavior. However, the dependence of 0κ  and 1κ  on the 
initial bubble radius still persists. This is confirmed by Fig. 
5, which presents the best-fit values of 0κ  and 1κ  versus 
the initial bubble radius for the same experimental data as 
in Sec. 3. The best-fit values of 0κ  and 1κ  are shown by 
circles in Figs. 5(a) and 5(b), respectively. The values of χ  
remain virtually the same as in Fig. 1(b). Note that Fig. 5(a) 
is almost identical to Fig. 1(a). This means that the presence 
of the term 1 R Rκ &  in Eq. (13) does not virtually change 

the constant component of the shell viscosity, 0κ , as 

compared to the shell viscosity of the de Jong model, Sκ . 
This is only natural if we take into consideration that the 
term 1 R Rκ &  is responsible for “compression-only” 

behavior, while 0κ  describes the behavior of lipid as a 

material. If that is true, the spread of the values of 1κ  in 
Fig. 5(b) can be explained as follows. It is hypothesized in 
[6] that “compression-only” behavior is a result of initial 
shell buckling. In its turn, the degree of initial buckling for 
a particular bubble is likely to be a result of random factors 
so that bubbles of the same size can have a different degree 
of initial buckling. Therefore the disordered (statistical) 
spread of the values of 1κ  is quite expected. This is not the 

case, however, for 0κ , which is assumed to be a constant 
of lipid as a material, and therefore the dependence of this 
constant on the initial bubble radius requires a further 
consideration.  

 
Fig.3 Simulated radius-time curves for a 2.03-µm-radius 
encapsulated bubble insonified with a 6-cycle, 1.8 MHz, 
100 kPa acoustic pulse. (a) The Kelvin-Voigt shell model. 
(b) The model with the shell viscosity specified by Eq. (13). 

 
Fig.4 Fitting of an experimental radius-time curve showing 
“compression-only” behavior. (a) The experimental radius-
time curve. (b) The best fit given by the Kelvin-Voigt shell 
model. (c) The best fit given by the model with the shell 
viscosity specified by Eq. (13). 

Considering Fig. 2(a), we should seek a law for 0κ  that is 
to describe shear-thinning behavior. There are many laws 
used in the rheology of polymers to model shear-thinning 
behavior. Following the way of simple models as before, let 
us try the following equation:  
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Fig.5 Best-fit values of 0κ  and 1κ versus the initial bubble 

radius. Fitting was done by using Eqs. (12) and (13).  

 ( ) 1

0 1( ) 1 | | /R R R R R Rκ κ α κ
−

= + +& & & , (14) 

The first term in this equation is a particular case of the so-
called Cross law. With Eq. (14), setting 4α =  µs, the 
fitting of the same experimental data as in Figs. 1 and 5 
gives the values of 0κ  shown in Fig. 6, the values of 1κ  
remaining the same as in Fig. 5(b). It is seen that the spread 
of the values of 0κ  in Fig. 6 is noticeably smaller than in 

Fig. 5(a), and we now have 0 max 0 min( ) ( ) 2.4κ κ ≈  

instead of 0 max 0 min( ) ( ) 8κ κ ≈  as in Fig. 5(a).  

 
Fig.6 Best-fit values of 0κ  versus the initial bubble radius. 

Fitting was done by using Eqs. (12) and (14). 

5 Conclusion 

Using experimental data, it was shown that the lipid coating 
exhibits the properties of both shear-thinning and strain-
softening material. It was proposed to use the nonlinear 
viscous theory for the modeling of the “compression-only” 
behavior and the dependence of the shell viscosity on the 
shear rate. It was shown that the application of a correct 
rheological law can eliminate the unnatural dependence of 
the shell viscous coefficient on the initial bubble radius, 
which is shown by currently existing models.  
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