
Frequency sweeping and fluid flow effects on particle
trajectories in ultrasonic standing waves

Bart Lipkensa, Jason Dionnea, Michael Costolob and Edward Rietmanb

aWestern New England College, 1215 Wilbraham Road, Box S-5024, Springfield, MA 01119,
USA

bPhysical Sciences Inc., 20 New England Business Center, Andover, MA 01810, USA
blipkens@wnec.edu

Acoustics 08 Paris

4777



Particle concentration in ultrasonic standing waves by the acoustic radiation force is discussed. The acoustic 
radiation force is a function of the density and compressibility of the fluid and the suspended particles. A two-
dimensional theoretical model is developed for particle trajectory calculations. An electro-acoustic model is used 
to predict the acoustic field in a resonator. The results of the linear acoustic model are used to calculate the 
acoustic radiation force acting on a particle suspended in the resonator. A particle trajectory model is developed 
that integrates the equation of motion of a particle subjected to a buoyancy force, a fluid drag force, and the 
acoustic radiation force. Computational fluid dynamics simulations are performed to calculate the velocity field. 
For a fixed frequency excitation, the particles are concentrated along the stable node locations of the acoustic 
radiation force. Through a periodic sweeping of the excitation frequency particle translation is achieved. Two 
types of frequency sweeps are considered, a ramp approach and a step-change method. Numerical results of 
particle trajectory calculations in a resonator with dimensions much larger than a typical wavelength are 
presented. Experimental observations of particle concentration of 6 μm polystyrene spheres are presented.  
 

1 Introduction 

Trajectories of particles, subjected to several forces, 
such as the buoyancy force, the fluid drag force, and the 
acoustic radiation force, are numerically calculated.  The 
model is used as a design tool of flow-through resonators 
with inlets and outlets for fluid flow to enter and exit the 
resonator.  The fluid flow entering the waveguide contains 
suspended particles that need to be filtered from the fluid 
flow.  The action of the acoustic radiation force 
concentrates and separates these particles from the fluid 
stream.  For a fixed frequency excitation, the action of the 
acoustic radiation force moves the particles to the stable 
zero locations of the acoustic radiation force.  Drifting 
ultrasonic waves, created by a periodic sweeping of the 
excitation frequency, are used to achieve particle translation 
across portions of the resonator.     

Several review papers [1] – [5] present an overview of 
the fundamental principles and applications of the acoustic 
radiation force.  King [6], Yosioka and Kawasima [7], 
Gor’kov, [8] and others developed the fundamental theories 
of the acoustic radiation force.  Of interest to our current 
efforts is the work by Tolt and Feke [9], [10].  They 
developed a separation process based on the acoustic 
radiation force in a stationary ultrasonic standing wave 
field.  They employed a forced coincidence excitation 
method where flexural wave modes of the pipe wall (in 
which the fluid resides) are matched with higher order 
acoustic modes of the fluid within the pipe.  Tolt and Feke 
[9] used a frequency sweeping method to translate the 
concentrated particles across the resonator.  The frequency 
sweep is over a range of 2f0, where f0 is the fundamental 
resonance frequency of a resonator with length L, i.e., 
f0=2cf/L, where cf is the speed of sound of the fluid in the 
resonator.  Hill et al. [11, 12] and Townsend et al. [13] 
developed a model for the calculation of particle paths for 
suspended particles in a fluid.  The particles are exposed to 
three forces, acoustic radiation force, fluid drag force, and 
buoyancy force.  An electro-acoustic model is used to 
calculate the acoustic field in the resonator.    A separate 
model is used to calculate the flow velocity vectors in the 
resonator.  A third model considers the particle-acoustic 
field interaction.  Harris et al. [14] used a similar model as 
that described by Hill [11] to calculate the performance of a 
micro-engineered ultrasonic particle manipulator.  Results 
from the model were compared with experimental results 
for separation of 1 μm latex particles and yeast particles in 

water.  A second example of using frequency sweeps to 
translate particles across an ultrasonic resonator is 
presented in the work by Handl et al. [15].  They used a 
four step frequency sweep that alternated between the 
frequencies of four consecutive acoustic resonance 
frequencies of the cavity.  They showed that under these 
conditions particles are translated across the resonator.  The 
measured particle trajectories compared favorably with 
those predicted by a numerical model.   
 The goal of this work is to develop an engineering 
design model for the calculation of particle trajectories in 
the presence of fluid drag, buoyancy, and acoustic radiation 
force.  The resonators are macro-scale cavities, typically 
about 0.15m long, and 0.03x0.03m in cross-section.  Flow 
inlets and outlets are connected to the resonator.  Laminar 
flow fields are assumed.  The goal is to design resonators 
for the concentration and separation of particles from a 
particle-laden inlet flow.  Typically, two outlets are 
configured, one for the particle-free fluid and another for 
the particle rich fluid stream.  Particles are concentrated and 
then translated across the resonator by the acoustic 
radiation force.  Translation occurs through a periodic 
sweeping of the frequency of excitation, similar to Tolt and 
Feke [9] and Handl et al. [15].  The numerical model 
consists of multiple sub-models and uses the same 
framework as developed by Hill et al. [11, 12] and 
Townsend et al. [13].  A first model is the electro-acoustic 
model of a multi-layered resonator.  The second model is 
that of the particle – acoustic field interaction.  The third 
model is a computational fluid dynamics (CFD) simulation 
of the steady flow field in the inlet, resonator, and outlets of 
the system.  The fourth model integrates the equations of 
motion of a particle in the resonator.  Three forces act on 
the particle: the acoustic radiation force, the buoyancy 
force, and the fluid drag force. 
 In section 2, the electro-acoustic model and the acoustic 
radiation force model are discussed.  Section 3 covers the 
CFD simulation and the particle trajectory model.  Results 
of the electro-acoustic model are shown in section 4.  
Particle trajectory computations and experimental results 
are shown in section 5.  

2 Electro-acoustic model 

A one dimensional model of the acoustic pressure and 
velocity in a particle concentrator has been developed.  It 
includes the coupling with a piezoelectric transducer.  
Hence, it allows for the direct calculation of acoustic 
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pressure as a function of the applied voltage to the 
transducer.  As such it can be used to study the effect of the 
inclusion of matching layers, the type of bonding materials 
used, and the geometry and type of material of the end cap 
of the concentrator.  Once the acoustic field is solved for, 
the acoustic radiation force is calculated through a 
numerical implementation of Gorkov’s expression [8] for 
the radiation force.  The basic setup of the model is similar 
to that of Hill et al. [11, 12] and Townsend et al. [13]. 

2.1 Acoustic model 

 The acoustic pressure and velocity in a material layer is 
calculated as function of the end impedance of the layer and 
the properties of the layer, i.e., density ρ, speed of sound c, 
and frequency f.  Fig. 1 shows a schematic of a typical 
material layer. The mechanical impedance at the end of the 
layer is denoted by ZmL, where the mechanical impedance is 
defined as Zm = F/u=P*S/u, the ratio of force divided by 
velocity, where the force F is the product of pressure P and 
cross-sectional area S.  One dimensional wave propagation 
is 

X=0 X=L

ZmL
A exp(jwt-kx) B exp(jwt+kx)

 Fig. 1.  Schematic of an acoustic waveguide terminated by a mechanical 
impedance ZmL.  A is the amplitude of the forward propagating wave, and 
B the amplitude of the backward propagating wave. 
 

used where the forward propagating pressure wave is 
defined as A exp(jωt-kx) and the backward propagating 
wave is defined as B exp(jωt+kx).  A and B are the 
magnitudes of the pressure waves, ω is the angular 
frequency, k=ω/c is the wavenumber, and c is the speed of 
sound.  The total pressure in the layer is then 
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By applying the known end impedance ZmL, we find the 
following equations for the impedance Zm, acoustic 
pressure p(x,t), and particle velocity u(x,t) in the resonator, 
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These equations can now be repeatedly used for a typical 
concentrator cell that contains many layers. 

Losses can be included in the model by incorporating 
complex material constants.   

2.2 Piezo-electric transduction model 

A transducer model operates in its thickness mode near 
its resonance frequency.  Standard piezo-electric relations 
provide the coupled equations that describe the operation of 
the transducer. A general representation of the mechanical 
impedance Zm of the piezoelectric transducer includes a 
mass Mm, compliance Cm, and a damper Rm, or 

Rm
Cj

MjZ
m

mm ++=
ω

ω 1
. (7) 

To obtain a complete circuit representing the 
piezoelectric transducer and the load that the transducer 
drives, we include a supply voltage Eo and internal 
impedance Zg representing the voltage from the amplifier 
driving the transducer and a load impedance ZLwhich 
represents the mechanical impedance of the concentrator 
cell acting on the transducer.  The load impedance can be 
calculated by following the procedure discussed in the 
previous section.  This final circuit is shown in Fig. 3, 
where αem is the electro-mechanical coupling factor and Ce 
is the electrical capacitance of the transducer. 

Ce

Zm/a em
2

Eo

Zg
ZL/a em

2

+

-

 
Fig. 3. Complete circuit representation of the piezoelectric transducer, 
including the amplifier that supplies the voltage to the circuit and the 
mechanical load impedance presented by the concentrator cell. 

 
The circuit is solved for the voltage across the load 

impedance which is related to the force F1 acting at the 
interface between the transducer and the first layer.  The 
result for the force is 

[ ]( )21
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Once the force F1 between the transducer and the first 
layer is found from (8), we can use (5) to solve for the 
unknown amplitude A and then to determine the force FL at 
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the end of the first layer, at the interface between layer one 
and two.  This force is given as 
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where ZmL is the mechanical impedance at the end of the 
layer and the layer length is L.  Repeated application of (9) 
yields the forces at the interfaces.  The variation of pressure 
and velocity in each layer can be calculated in a similar 
way.  The result is 
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where F1 is the force at the x=0 interface of the layer.  

2.3 Acoustic radiation force 

Next, the acoustic radiation force is calculated according 
to the formulation of Gor’kov [8].  The primary acoustic 
radiation force FA is defined as a function of a field 
potential U 

( )UFA −∇= ,  (12) 
where the field potential U is defined as 
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and f1 and f2 are the monopole and dipole contributions 
defined by 
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where p(x,y,t) is the acoustic pressure and u(x,y,t) is the 
fluid particle velocity.  Λ is the ratio of particle density ρp 
to fluid density ρf and σ is the square of the ratio of particle 
sound speed cp to fluid sound speed cf.  Vo is the volume of 
the particle.  For a one-dimensional harmonic acoustic 
wave, the expression for the acoustic radiation force is: 
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where UM and PM are the magnitudes of acoustic velocity 
and pressure.  The calculation of the acoustic radiation 
force is implemented through a numerical calculation of the 
spatial derivative of velocity and pressure.   

3 Particle trajectory model 

The particle trajectory model contains the algorithm to 
calculate the trajectories of particles entering the acoustic 
concentrator cell from the inlet port.  The model takes into 
account three forces acting on the particles, (1) the fluid 
drag force, (2) the buoyancy force, and (3) the acoustic 
radiation force 

The particle trajectory model that is developed is a two-
dimensional model of the concentrator.  The x-axis 
represents the horizontal dimension along which the 
acoustic radiation force acts and the y-axis is the vertical 
dimension.  The equations that govern the trajectories of the 
particles are 
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Here xp and yp represent the location of a particle of mass 
mp at a given time t.  The fluid drag force is FD, the acoustic 
radiation force is FA, and the buoyancy force is FB.  The 
equations are integrated numerically with a fourth-order 
integration scheme with variable time step.  A typical value 
for the minimum time step is on the order of 0.1 μs.   In the 
current model the y-axis is always assumed to be the 
vertical axis.  Therefore, the buoyancy force only acts in the 
y-direction.  The acoustic radiation force only acts in the x-
direction.  It is straightforward to generalize the model and 
incorporate components of the acoustic radiation force and 
the buoyancy force in the both directions.   

The fluid drag force FD is given by  
( )pfpD uuRF −= πμ6 , (17) 

where Rp is the particle radius, uf is the fluid velocity, up 
is the particle velocity, and μ is the dynamic viscosity. 

In order to calculate the fluid drag force we have to 
calculate the flow field in the concentrator.  This is done by 
a CFD simulation.  Fluent is used for the CFD calculations.  
Once a solution is obtained, the entire velocity flow field is 
saved, i.e., all the velocity vectors at all the grid points are 
saved to a file.  The particle tracer model includes a bilinear 
interpolation routine to find the flow velocity vector at any 
point within the concentrator cell.     

The buoyancy force FB is given by 

( )pfpBy gRF ρρπ −= 3

3
4

, (18) 

where g is the gravitational acceleration.  
  

4 Results of electro-acoustic model 

The model was used to predict the performance of a 15 
cm long glass concentrator cell.  The cell has a diameter of 
1.125 inches.  The cell is capped at one end with a 2 MHz 
PZT4 transducer of 1” diameter.  The other end is capped 
with an Aluminum end cap.  The thickness of the end-cap is 
made to be one quarter of the operating wavelength of the 
cell.  Standard properties of PZT-4 are used to calculate the 
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characteristics of the transducer.  For a 15 cm water 
column, the fundamental resonance frequency is 4.921 kHz.  
The frequency response of the peak acoustic pressure in the 
resonator is shown for frequencies near the transducer 
resonance.   

1.884 1.886 1.888 1.89 1.892 1.894 1.896 1.898 1.9 1.902

x 10
6

1

2

3

4

5

6

7

8

9
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Fig. 4. Frequency response function of the peak acoustic pressure in the 
resonator, showing acoustic pressure (Pa) versus time (s).  Calculations are 
done for a 55V supply voltage. 

5 Particle trajectories 

5.1 Zero mean fluid flow trajectories 

Simulations were done for a particle with a density of 1100 
kg/m3, a speed of sound of 2400 m/s, and a radius of 3 μm.  
The particle simulations were done for a four level 
backward frequency sweep, i.e., 1.8860, 1.8908, 1.8958, 
and 1.9008 MHz.  The sweep period is 0.08s.  The particle 
simulation is done for a particle that is initially located at a 
distance of 0.04m from the transducer face.  As shown in 
Figure 5, initially the particle moves to the left to its stable 
location, then, switching to the next frequency initiates 
translation of the particle to the right.  It takes about 0.02s 
for the particle to reach is equilibrium position at about 
0.03993m.  A simulation was done for a total time duration 
of 0.8s.  The results are shown in Figure 6 and indicate that 
over the entire duration of the simulation (0.8s) the particle 
translates over a distance of 2.7mm, resulting in an average 
translation speed of 3.375mm/s. 
Experiments were performed in a 6 inch long glass tube 
driven by a 2 MHZ piezo-transducer.  A similar sweeping 
method was used to concentrate and translate the 6 μm 
polystyrene spheres.  Fig. 7 shows the concentrated 
particles.  Fig. 8 shows the particle location after several 
minutes of exposure to the ultrasound.  As can be seen, the 
particles have translated to the top of the resonator and 
form a large clump.   

 
Fig. 5. Calculated particle trajectory for a 6 μm polystyrene particle for a 
two sweep period time window.   

 
Fig. 6. Calculated particle trajectory for a 6 μm polystyrene sphere over a 
0.8s time window. 

 

 
Fig. 7. Photo of concentrated 6 μm polystyrene spheres.  Transducer 
frequency is 2 MHz. 

5.2 Particle trajectories in presence of 
mean fluid flow 

An example of a typical result for particle translation in the 
presence of mean flow is shown in Fig. 9.  There is a 
laminar flow field entering the resonator at the top.  The 
flow field is split into two streams, a wider stream for the 
cleaned fluid, and a smaller collector stream for the 
captured particles.  The average inlet flow velocity is 8.5 
mm/s.  A particle trajectory is shown for a particle that is 
located in the inlet channel near the left wall.  As can be 
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seen through the action of the acoustic radiation force the 
particle is able to move across the primary stream, so that it 
is collected by the secondary stream. 
 

 
Fig. 8. Photo of 6 μm polystyrene spheres that have translated to the top of 
the 6 inch resonator.  Frequency of excitation is 2 MHz. 

 
Fig. 9. Example of particle trajectory calculation in the presence of mean 
flow. 

 

6 Conclusion 

A model is developed for particle trajectory calculations 
in a fluid.  The particle is subjected to three forces, 
buoyancy, fluid drag, and the acoustic radiation force.  A 
numerical integration is used to determine the particle 
trajectories.   

Particle translation is achieved through a periodic 
sweeping of the frequency of excitation.   Linear frequency 
sweeps results in particles translated from one end of the 
resonator to a location near the other end.   

The simulations show that particle separation processes 
that use the acoustic radiation force can be effective in 
removing particles from an inlet stream in a flow-through 
device. 
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