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The transient insular nodal analysis method (TINA) combines elements from the finite-differences (FD)
and transmission-line matrix methods (TLM) in one unified approach. As with most time-domain
finite-difference (TD-FD) methods, TINA uses time-decoupled cells, avoiding the need for solving large
system matrices. The time-decoupled cells allow for easy parallelisation, and the solution of large
systems in detail. Due to the use of an exact transmission-line model in the cells, wave propagation can
be computed without the need for discretisation of the equations, nor the use of prediction, yielding an
unconditionally stable method. Boundary conditions are implicit, and are solely defined by the wave
speed and characteristic impedance of the medium. One key difference is how cells which transmission
time is not an integer multiple of the simulation time step are incorporated in the TINA simulation.
These mismatches occur due to the varying wave speeds of the different media in the cells. In TINA,
the match is obtained through interpolation, as opposed to the stub-matching methodology employed in
TLM. In this paper, we will demonstrate the validity of the interpolation approach analytically, as well
as compare the interpolation method to a theoretical case.

1 Introduction

Matrix methods, such as the transmission-line matrix
method (TLM) pioneered by Johns [1], are commonly
used in many disciplines. Since their inception, one of
the main issues bas been to maintain synchronicity of
the numerical simulation when different materials are
present and the propagation times are not integer mul-
tiples of each other [2, 3]. In TLM, stubs are used to
reduce the wave speed in some of the materials and allow
for a common time step. Changes in the discretisation
mesh itself are also used in some cases. Similar meth-
ods are also proposed in time-domain finite-difference
(TD-FD) methods such as the classic Yee method [4] or
the different formulation of this approach proposed by
Chen [5]. The latter, together with concepts from the
electro-magnetic transient program (EMTP) [6], is the
base concept used in the transient insular nodal analysis
(TINA) simulator presented here [7].

Although stubs are computationally efficient, their use
introduces undesired effects [3]. First, the bandwidth
of the material is reduced. Second, the response of
the stub-matched line exhibits a parasitic transient be-
haviour due to the reflections on the stub.

The second of these disadvantages can be overcome by
a different approach to synchronism through the use of
interpolation. This method is commonly used in EMTP-
style simulations of electrical power systems [6].

Such an interpolated transmission-line model can be
readily used in a TD-FD scheme. In TINA, no modifica-
tions are required as the solutions are obtained though
nodal analysis, which is the same method used in EMTP
simulations [8]. This allows for a direct implementation
of the interpolated line-model approach and through
this, a simplified and effective approach to system-wide
synchronisation without the use of stubs or an irregular
mesh.

In this paper, the interpolated transmission line will be
derived from the ideal model in the time domain. Its
potential accuracy will be shown analytically for the
1D case in the frequency domain by comparison with
an exact line model. The latter is normally used in
both TLM and TD-FD solutions when no matching is
required. Time-domain comparisons will also be made.

2 The Bergeron Line Model

Both the TLM and TD-FD families of simulators are
based on the underlying concept of wave propagation,
be it conceptually through a scattering (Huygens’ prin-
ciple) approach [1], or a direct discretised solution of
Maxwell’s equations [4, 5].

When solved for an 1D case in a lossless, non-dispersive,
homogeneous medium, the solution for a travelling wave
can be obtained from Maxwell’s equations [9]:

∂2Ex(z, t)
∂z2

= εμ
∂2Ex(z, t)

∂t2
v =

1√
με

Zc =
√

μ

ε
(1)

This wave equation shares the same form as the 1D
acoustic plane-wave equation [10, 11].

When solved for sinusoidal waves (d’Allembert solution),
and combining the current/voltage equation pairs for
forward and backward waves [9, 8, 7], the following time-
domain equations are obtained for the model in Fig.1,
with τ the propagation time of the line and Zc the char-
acteristic impedance:

ekh(t) = vm(t− τ) + Zcim(t− τ) (2a)
emh(t) = vk(t− τ) + Zcik(t− τ) (2b)

vm(t)− Zcim(t) = emh(t) (3a)
vk(t)− Zcik(t) = ekh(t) (3b)

Note the sign change on the current in the second pair
of equations. This is due to the fact that the model
described in Fig.1 has the current set to flow into the
model at both ends. As such, a current that enters
the model at node K inverts sign when it exits at node
M (counter to the indicated current). The sign change
corrects for this and simplifies the use of the model by
keeping the current flow consistent, regardless of which
side of the model is used for injection and reception of
the forward and backward waves.

This model, known as the Bergeron model [12], is an ex-
act solution to the wave equation in the 1D lossless case,
and can be directly implemented in a digital computer
[8]. An additional advantage of the model is that both
terminals k and m are galvanically decoupled in time,
allowing a local solution. TLM and TD-FD methods
use, at least implicitly, this model for the ideal, lossless
case.

Acoustics 08 Paris

6474



Zc Zc

vk(t) emh(t)ekh(t)

im(t)ik(t)

vm(t)

Figure 1: Lossless Line Model

3 The Interpolated Line Model

In a discrete calculation, one has to choose a time step
for the simulation. As long as this time step is equal to,
or an integer multiple of, the transmission time of the
line, the solution can be found. However, in a practical
system, multiple materials are frequently required for a
sufficiently accurate representation of reality. These ma-
terials rarely have wave speeds that work out to integer
multiples of each other’s propagation time. As such,
there is a problem of synchronicity, where different time
steps would be required within the simulation [2, 3].

In EMTP simulations of power systems, interpolation is
frequently used to overcome the problem of synchronic-
ity of the transmission lines [6, 13].

When implemented on a digital computer, the expres-
sions of Eqs (2a,2b) are programmed so that the past
values in the equations, referred to by the indices (t−τ),
are available in program memory in order for the results
at the current time step (t) to be computed. For a given
τ , which is defined by the length of the line l and its wave
speed v, we can find the number of history values that
need to be stored in memory from the simulation time
step Δt:

τ =
v

l
(4)

history depth =
τ

Δt
(5)

When the τ of the line is an integer multiple of the sim-
ulation time step, this history depth will be an integer
number, and the value is available in memory since data
is saved in the history storage at each time step.

However, when the τ of the line is no longer an integer
multiple of the time step, we require access to history
values that lie in-between exiting data in order to com-
pute the next contribution at the current time step (t).
The history memory depth is then rounded-up to the
next integer value to accommodate the time-step bound
data and interpolation is used to obtain the required
history value.

In Fig.2, a simulation time step of Δt = 0.02 ms and a
travelling time of τ = 0.10 ms are used. It can be seen
that, for a simulation time (t) of 0.18 ms, the required
history value of 0.08 ms is available in the table and the
current value can be readily computed.

In Fig.3, a simulation time step of Δt = 0.03 ms is used.
This time, the required history value of 0.08 ms is not
available in the table, as it lies in between the available
history values of 0.06 ms and 0.09 ms.

When the change between two such history values is rel-
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Figure 2: History Values in Memory, Δt = 0.02 ms
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Figure 3: History Values in Memory, Δt = 0.03 ms

atively small, it can be seen that the use of interpolation
in time between the history values may be of use to find
a good approximation for the variable at the required
time. In EMTP, and TINA, linear interpolation is used
for computational efficiency.

Applying linear interpolation [14] to the line model from
Eqs (2a,2b), the interpolated equation pair becomes:

ekh(t) = vm(t− τint) (6a)
+r [vm(t− τint −Δt)− vm(t− τint)]
+Zcim

+Zcr [im(t− τint −Δt)− im(t− τint)]
emh(t) = vk(t− τint) (6b)

+r [vk(t− τint −Δt)− vk(t− τint)]
+Zcik

+Zcr [ik(t− τint −Δt)− ik(t− τint)]

The known history values are stored at (t− τint) and
(t− τint −Δt), where τint is given by Eq (7) and is the
line travelling time expressed as an integer multiple of
the simulation time step. % is the modulo division.

τint = τ − (τ%Δt) (7)

r is the distance from the (t− τint) known value within
the interpolated interval so that 0 ≤ r < 1, and is given
by:

r =
τ%Δt

Δt
(8)
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4 Frequency Domain Error Anal-
ysis

Since the errors associated with the interpolation are
due to a low-pass filter effect, the analysis was per-
formed in the frequency domain. Substituting the his-
tory sources for the terminal conditions and writing both
the ideal-line and interpolated-line equation pairs in pha-
sor form:

V k − ZcIk =
(
V m + ZcIm

)
e−jωτ (9a)

V m − ZcIm =
(
V k + ZcIk

)
e−jωτ (9b)

V k − ZcIk =
(
V m + ZcIm

)
e−jωτintS (10a)

V m − ZcIm =
(
V k + ZcIk

)
e−jωτintS (10b)

S =
[
1 + r

(
e−jωΔt − 1)] (11)

Eqs (10a,10b), representing the interpolated line, have
two parts: an ideal line with a transmission time set to
an integer multiple of the time step, and the travelling-
time correction performed by multiplying with a time-
shifting function S. It is this function that will change
the frequency response of the model. r is the interpo-
lation factor defined in Eq (8). When r is zero (i.e.,
no interpolation), S becomes unity and the response is
equal to the ideal line-model with length τ . If r were
to equal one, the response would be equal to a longer
ideal line with τ one Δt larger then before. Again, no
interpolation would be used. For all other values of r,
interpolation (thus, time-shifting) occurs.

In practice, r cannot equal one, as the integer division
operator in Eq (8) would wrap around and make it zero.
The line length would then be adjusted to an integer
multiple, and thus not require interpolation.

In order to find the frequency and phase responses of
the interpolated model, Eqs (9a,9b,10a,10b) were solved
using Maxima1 for both open-circuit and short-circuit
boundary conditions on nodeM [15]. Transfer functions
can now be obtained:

• Open ideal line → Im = 0

V m

V k

=
2ejωτ

e2jωτ + 1
(12)

• Shorted ideal line → V m = 0

Im

Ik

= −e2jωτ + 1
2ejωτ

(13)

• Open interpolated line → Im = 0

V m

V k

= −N

D
(14)

• Shorted interpolated line → V m = 0

Im

Ik

=
D

N
(15)

1An open-source computer algebra system (maxima.
sourceforge.net)
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(a) Magnitude Open Line for varying Δt
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Figure 4: Magnitude Responses

where

N = r
(
2e2jωΔt − 2ejωΔt

)
ejωτint

−2ejωτint+2jωΔt (16)
D = r2

(
e2jωΔt − 2ejωΔt + 1

)
+r

(
2ejωΔt − 2e2jωΔt

)
+e2jωτint+2jωΔt + e2jωΔt (17)

The magnitude responses were plotted in Fig.4(a) and
Fig.4(b), while Fig.5 shows the phase response for the
open line. The shorted case has the same response, save
for inverted phase. The simulation parameters were τ =
50 μs and Δt was varied between 5 μs and 50 μs. The
peak of the response is at 5000 Hz, which is as expected
for a λ

4 open/shorted section of line. In the plots,
exact results were obtained when Δt was equal to 5 μs
and 50 μs. In these cases, the line travelling time τ was
an integer multiple of the simulation time step and the
interpolated model reverts to the ideal case. In other
cases, the influence of the interpolation becomes visible
as a deviation at higher frequencies due to the reduced
bandwidth.

It can be seen that for 20 μs, which is 2.5 times smaller
than τ , the deviation is much less than for 35 μs, which
is 1.43 times τ . This observation will be used later in
this paper to define an interpolation-error criterion.

When using interpolation, it can be readily appreciated
that the error will be highest when r = 0.5. For this
value, the interpolated value is equally distant from the
two known values in the history table. The effect of the r
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Figure 5: Phase Response Open Line for varying Δt

value on the simulation precision is illustrated by Fig.6.
In these plots, the travelling time of the line was varied
so that 0 ≤ r < 1. Δt was set to 25 μs and τ varied from
50 μs to 75 μs for the shorted case. The plotted curves
are arranged so that the the top left traces correspond
to an r of 1 (which is shown in the table as 0, as the
r calculation will wrap around) and the bottom right
traces for an r of 0.

As can be seen, only a small inaccuracy results from
where in the interval the interpolated value is obtained,
compared to the ideal case for each r. Do note that, as
the travelling time is increased, the resonance frequency
shifts down.

5 Interpolation Error Criterion

Since interpolation is only accurate when the changes
between the discrete history values are small, the sim-
ulation time step has to be small enough compared to
the wave speed on the line so that the rate of change in
one time step is limited. This requirement is due to the
low-pass filter introduced by the interpolation, which is
an averaging procedure. Hence, inaccuracies occur for
fast-changing signals due to the attenuation of higher-
frequency components. A common error criterion used
in the EMTP [6, 13] is to enforce a time step of five to
ten times the line travelling time τ .

In addition, spatial and temporal Nyquist criteria must
be satisfied. The simulation time step must be at most
half the maximum frequency present in the simulation
[16]. In practice, five to ten times the maximum fre-
quency is recommended. This is the temporal Nyquist
criterion. Since space is also discretised in matrix meth-
ods, a similar consideration applies to the size of the
mesh elements compared to the wavelength of the trav-
elling wave in the medium. To avoid these dispersion
errors, the cells should be five to ten times smaller than
the shortest wave length in the simulation [2, 3]. These
simulation criteria can be summarised as follows:

EMTP

• Interpolation Criterion: Δtmax = τmax

10

• Nyquist Criterion: Δtmax = 1
10fmax
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Figure 6: Magnitude Shorted Line for varying r

TINA

• Spatial Discretisation Criterion: Δlmax = λmin

10

• Temporal Discretisation Criterion: Δtmax = 1
10fmax

Note that in TINA [7] and some TD-FD methods [5],
Δl, the size of the cells in the mesh, is twice the length
of the actual lines in the cell. Thus, when a criterion of
five is used, it is in effect one of 10.

By combining these criteria, a set of guidelines for the
simulation parameters, the maximummesh cell size Δlmin

and maximum simulation time step Δtmax, can be ob-
tained (with vmin the wave speed of the slowest material
and fmax the highest frequency in the simulation):

• Spatial Discretisation Criterion: Δlmax = vmin

10fmax

• Temporal Discretisation Criterion: Δtmax = 1
100fmax

Thus, the use of interpolation requires a simulation time
step one hundred times the highest frequency in the sim-
ulation compared to ten times for a non-interpolated
case. Furthermore, for each line, ten memory positions
are used for each variable in the interpolated line model.
Compared to the single memory position used for each
line in TLM-style simulations with matching stubs, the
memory use can thus become an order of magnitude
larger using the interpolated line.

It must be noted that the traditional stub-line method
also suffers from a parasitic low-pass filter. The stub line
forms a shunt capacitance (or inductance) and, with the
line impedances, thus forms a filter as well. Thus, the
normal condition of Δt ten times fmax would have to
be increased due to the reduced bandwidth [3].

6 Time-Domain Response

One of the disadvantages of stubs is the parasitic oscil-
lations in the response that occur due to the reflections
on the stub [3]. When using interpolation, these are not
present. Fig.7 illustrates the behaviour of two interpo-
lated line cells connected in series, when excited with a
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Figure 7: Time domain response to a step function

step function in TINA. Each line cell was constructed
from two half-length sections. Both the source and load
are matched to the lines. The signal data was measured
on the centre node of the first cell (input) and on the
centre node of the second cell (output). As such, there
were two sections of line between the points of observa-
tion. The simulation time step was 56 μs and both lines
had a τ of 250 μs. The impedance was 100 Ω. These
parameters result in an r of 0.46, and 4.46 time steps
per line.

As can be seen, the response does not exhibit any par-
asitic behaviour except for a reduced bandwidth. This
reduction is made especially apparent though the use of
a step, which theoretically requires infinite bandwidth.
Moreover, a worst-case scenario for the interpolation ac-
curacy was chosen, as the deviation from one time step
to the next was the total signal amplitude and r was
approximately 0.5.

7 Conclusions

In this paper, the use of interpolation is introduced to
matrix methods, such as TLM and TD-FD. This con-
ceptually simple approach proved sufficiently accurate
and offers a better transient response than the tradi-
tional stub-matched approach to synchronisation. The
method does require more memory and stricter time-
step constraints than stub-matching.

The performance of the method was evaluated in com-
parison to the ideal line model and initial criteria for
accuracy were obtained.

Future work will focus on the behaviour of the method in
2D and 3D and explore methods to reduce the memory
consumption.
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