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This paper presents a lumped element model of supralaryngeal air sacs of primates. It assumes that the air sac is 
connected to the vocal tract and plays a passive role in vocalizations (something which is most likely not the case 
for all vocalizations of all primates). It is shown that the most important factors influencing its acoustics (for the 
frequencies relevant in primate vocalizations) are the volume of air it contains and the mass of the walls. It is 
then shown that the spectrum of certain calls of Alouatta guariba clamitans can be closely approximated with 
this model when it is connected to a simple vocal tract model with dimensions that are realistic for the species 
involved. Finally, it is discussed how the model could be extended to become valid for higher frequencies. 

1 Introduction 

Supralaryngeal air sacs are an anatomical feature of many 
monkeys and apes [e. g. 2, for a recent overview]. They are 
inflatable sacs that are connected to the vocal tract above 
the larynx. There is considerable debate about the function 
of air sacs. Although their connection to the vocal tract 
would suggest a function in vocalization, other functions 
have also been proposed. These include the ability to 
rebreathe air [3], strengthening of the thoracic cage for 
locomotion using the arms [as discussed in 2] and a means 
to prevent hyperventilation during long vocalizations [2].  
As for the role of air sacs in primate vocalizations, there are 
two things that they could do. They could change the 
resonance properties of the vocal tract, or they could 
change the impedance matching between the source of 
acoustic energy (vibration of the vocal cords or of 
analogous anatomical structures) and the surrounding air. In 
the case of Cercopithecus neglectus, it has been found that 
puncturing the air sac decreases the loudness and changes 
the timbre of vocalizations [4]. On the other hand, surgical 
removal of air sacs in rhesus macaques (Macaca mulatta) 
did not result in spectral change of vocalizations [5]. 
Another possible experiment to investigate the acoustic role 
of air sacs would be to have an ape or a monkey vocalize in 
a mixture of helium and oxygen (which has a different 
speed of sound than ordinary air) and see how the acoustic 
properties change. Such an experiment is difficult to 
execute, however, and to the best of our knowledge has not 
been done, yet.  
Still, it would be interesting to better understand the 
potential role of air sacs in primate vocalization. Not just 
because air sacs are such a ubiquitous feature of primates, 
but also because humans do not have an air sac. Our closest 
evolutionary relatives, the great apes, all have air sacs, but 
we have apparently lost them. Furthermore, there is 
evidence from the anatomical features of fossil hyoid bones 
that Austrolpithecus afarensis [6] did have air sacs, while 
Homo heidelbergenis [7] and Homo neanderthalensis [8] 
did not. The question therefore arises why we lost air sacs 
in evolution. An obvious hypothesis would be that we lost 
them because of speech [9, 10]. However, in order to find 
an answer to this question, the potential acoustic function of 
air sacs must be understood. 
In this paper a start is therefore made with modeling the 
acoustics of air sacs. The question that is investigated is, is: 
what would the acoustic effect be of an inflated air sac, 
connected to a vocal tract? Note that although the 
assumptions of an open connection to the vocal tract and of 
a passive function in vocalization are made, no claim is 
made in this paper that all primates always use air sacs in 
this way.  Only the acoustic consequences of an air sac 
connected to the vocal tract are investigated. Whether air 
sacs are used in primate vocalizations at all, or whether 

primates can control the level of inflation and connection 
with the vocal tract, remains a question that needs to be 
investigated. However, with a detailed prediction of the 
acoustic effects of an air sac, such investigation might be 
facilitated. 
Techniques from speech synthesis are a starting point for 
this modeling effort, but there are three potential 
differences between air sac models and models of the vocal 
tract. First of all, wall motion is of much larger influence on 
the acoustics of air sacs than it is on the acoustics of a vocal 
tract. This wall motion also increases the importance of 
acoustic energy radiated through the walls – an effect that is 
usually ignored in speech modeling. Finally, air sacs tend to 
have cross-sectional sizes that are comparable to those of 
the wave length of frequencies that are relevant to primate 
vocalizations. Therefore, the assumption that acoustic 
waves are flat, which is usually made in modeling the vocal 
tract, is no longer valid in modeling air sacs.  
A first model is developed in some detail. This is a lumped 
element electrical analog model that is valid for lower 
frequencies. For higher frequencies (where the assumption 
of flat waves is no longer valid) a finite element model 
probably would probably be necessary but this is not 
elaborated in this paper. The lumped element model is used 
to investigate which factors have the most influence on the 
acoustics of an air sac. It is also shown how radiation 
through the walls of the air sac can be relevant at certain 
frequencies. The lumped element model is applied to 
approximate the spectrum of a howler monkey (Alouatta 
guariba clamitans) call, a spectrum that is difficult to 
explain with a simple tube model for the vocal tract. 

2 Lumped element model 

A lumped element model is a simplified representation of 
an acoustic system in which parts of the system are 
approximated by electronic components, such as capacitors, 
resistors or inductors. In such a system one electronic 
component often represents a spatially extended part of the 
acoustic system. This means that lumped element models 
are usually only good approximations at low frequencies – 
corresponding to wavelengths that are long in comparison 
with the dimensions of the modeled parts. However, as this 
approach simplifies the system to be modeled, analysis of a 
lumped element model can provide useful insights into the 
system’s behavior. 
The elements that are relevant for the acoustics of an air sac 
are the volume of air that resonates in the air sac, the wall 
that might vibrate and radiate sound, and the opening with 
which the air sac is connected to the rest of the vocal tract. 
Here we will not focus on how to model the connection, as 
it can be modeled by a standard acoustic tube model. 
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For the lumped element analysis, it will be assumed that 
pressure everywhere in the cavity of the sac is the same, 
that the wall moves with the same phase and amplitude 
everywhere, and that the air sac radiates sound as a sphere. 
The factors that are modeled are illustrated in Fig. 1. 

2.1 The cavity 

The air in the cavity acts as a spring that stores and releases 
energy when it is compressed and released. In electrical 
terms this can be modeled with a capacitor. As compressed 
air is heated slightly, and as this heat can be transferred to 
the walls, some losses might occur. This can be modeled by 
a (frequency dependent) resistor. The value of the 
capacitor, Cc  in acoustic terms is given by: 

 2c
a

VC
cρ

=  (1) 

where V is the cavity volume, ρa is the density of air and c 
is the speed of sound. 
The value Rc of the resistance due to losses at the wall is 
taken from Flanagan [1, section 3.24] and is given by:  

 
( )
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1
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c
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ρρ
η λω
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where A is the cavity’s area, η is the adiabatic constant, cp 
is the specific heat of air at constant pressure, λ is the 
coefficient of heat conduction and ω is 2π times the 
frequency of vibration f. Values of all constants are given in 
table 1. 

2.2 The wall 

As for the motion of the wall, it will be assumed in the 
lumped elements approach to vibrate with the same 
amplitude and phase everywhere. It will also be assumed 
that it behaves as a damped oscillator, which is described 
by the following equation: 

 ( ) dvp t A m bv k vdt
dt

⋅ = + + ∫  (3) 

where p is the differential pressure, v is the wall’s velocity, 
m its mass, b its damping and k its stiffness. Differential 
pressure is the difference between the (vibrating) pressure 
in the air sac and the pressure of the air outside the air sac. 
Now acoustic impedance is the ratio between pressure p 
and volume velocity u = v⋅A. Rewriting Eq. (3) to volume 
velocity and solving for p gives: 

 ( ) 2 2 2

m du b kp t u udt
A dt A A

= + + ∫  (4) 

Now if p and u are harmonic vibrations, with angular speed 
ω, they can be written as: 

 ( ) ( ),i t i tp t Pe u t Ueω ω= =  (5) 

where P and U are the (complex) amplitudes of the 
vibrations. Substituting this in (4) and dividing out eiωt 

gives: 

 2 2 2

1m b kP i U
A A A i

ω
ω

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (6) 

This is equivalent to an inductance, a resistance and a 
capacitance in series. The mass, stiffness and damping can 
at least in theory be measured for any air sac. However, for 
the purpose of this paper it is more convenient if they can 
be calculated from the properties of the air sac wall tissue. 
The wall’s mass can be calculated from its area, its 
thickness and its density. This results in the following value 
for wall inductance Lw: 

 2 2
w w

w
dA dmL

A A A
ρ ρ= = =  (7) 

where ρw is the density of wall tissue, and d is the wall’s 
thickness. 
The wall’s stiffness depends on Young’s modulus of the 
tissue. However, as the deformation of the wall is the 
stretching of a two-dimensional membrane, and Young’s 
modulus is defined for stretching along one axis, Young’s 
modulus E will have to be converted to a two-dimensional 
equivalent k2 using Poisson’s ratio ν: 

 
( )2 2 1

Ek
ν

=
−

 (8) 

This quantity gives a ratio between stretching of the surface 
and strain as follows: 

 2
S dk
A Aδ

=  (9) 

where S is the surface tension, d the thickness of the wall, 
and δA the change in area. Now in order to find a relation 
between pressure and volume velocity (as is required for 
acoustic impedance) a relation between surface tension and 
pressure is needed, as well as a relation between change in 
area and volume velocity. 
The relation between surface tension and pressure is given 
by the Young-Laplace equation: 

 
1 2

1 1p S
r r

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (10) 

where p is the differential pressure, and r1 and r2 are the 
principal radii of curvature. For a spherical air sac, this 
simplifies to: 

 2Sp
r

=  (11) 

In order to calculate the relation between change in area δA 
and volume velocity u, a relation between a radius of the air 
sac and its surface is needed. For all three dimensional 
shapes such a relation has the following form: 

 2A Cr=  (12) 
where C is a constant that depends on the object’s shape 
(4π for a sphere, for example). Now for a small change in 
area δA this becomes: 

 ( )2 2 2 2A A C r r Cr Cr r A Cr rδ δ δ δ+ = + ≈ + = +  (13) 

For small values of δA and δr, such that second order terms 
in the small quantities can be ignored, the following 
relation therefore holds: 

 2 2 rA Cr r A
r

δδ δ= =  (14) 

or: 
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Finally, the total displacement of air (equal to the integral 
of volume velocity over time) is equal to A times δr. 
Substitution in (15) then gives: 

 2
udt

A
r

δ = ∫  (16) 

Taking (9), (11) and (16) together and solving for p finally 
gives: 

 2
2

4dk udt p
r A

=∫  (17) 

From this it follows that the capacitance of the wall in terms 
of properties of the tissue is: 

 
2

24w
r AC
dk

=  (18) 

Damping is more difficult to measure for tissue, and 
therefore the value for wall resistance is calculated 
indirectly [following 11]. Instead of measuring damping 
directly, the quality factor Q (a number that indicates how 
strongly a system is damped) of the whole system is 
estimated, and the wall resistance is calculated from the 
quality factor and the inductance and capacitance of the 
wall as follows: 

 1 w
w

w

LR
Q C

=  (19) 

2.3 Radiation 

For simplicity’s sake it will be assumed that the air sac is a 
spherical radiator. This is admittedly quite unlike reality, 

but the relevant quantity is the amount of acoustic energy 
radiated per unit area, and this is not so different for 
different radiators. The spherical radiator results in the 
simplest equations. Furthermore, a hemispherical radiator 
in an infinite plane baffle (which is slightly more realistic) 
would result in the same radiation impedance.  
The acoustical impedance ZR of a spherical radiator is [e. g. 
12, section 10.D.2b]: 

 11

a
r

cAZ

ikr

ρ=
+

 (20) 

where k is the wave number 2πf/c. This is equivalent to a 
resistance: 

 a
r

cR
A

ρ=  (21) 

in parallel with an inductance: 

 a
r

rL
A

ρ=  (22) 

2.4 The complete circuit 

Assuming that the pressure is equal in every part of the 
cavity, it follows that the air in the cavity is subjected to the 
same pressure as the inside of the wall. The outside of the 
wall is subject to the pressure outside which is given by the 
radiation load. Therefore an electrical circuit analog follows 
in which the cavity branch is parallel to the wall branch in 
series with the radiation load. This circuit is illustrated in 
Fig. 1. 

2.5 Simplifying the circuit 

Given the lumped element circuit, it is possible to figure out 
which factors dominate the circuit’s behavior. For this, it is 
necessary to estimate a number of parameters, however. 
Some of these, such as the properties of air, are relatively 
well known, and need no discussion. Others, such as 
Young’s modulus of tissue are less well known, but 
estimates can be found in the literature [e. g. 13]. A value of 
around 8.5 KPa for Young’s modulus appears to be 
realistic. Given that biological tissue consists for a large 
part of fluids, and is therefore flexible but incompressible, 
Poisson’s ratio must be 0.5 or slightly higher. This results 
in k2 being approximately equal to Young’s modulus, and 
therefore a value of 9 000 was used. A density of tissue of 
103 kg·m–3 was assumed. Values for damping are harder to 
find in the literature, but in terms of the quality factor they 
range from 0.5 (which appears to be implicit in Maeda’s 
vocal tract model [14]) to 10 [11]. Here, a quality factor of 

Pressure

wall loss

radiation

input
Lw CwRw

Rc Cc

Rr Lr

 
Fig. 1 Schematic representation of air sac, with modeled
factors on the left and the lumped element electrical circuit
on the right. Values for elements of the circuit are given in
the text. 

constant value parameter value 
c 350 m·s–1 r 0.05 m 

ρa 1.14 kg·m–3 d 5×10–3 m 
cp 1.00×103J·kg–1K–1 k2 9 000 Pa 

λ 0.023 W·m–1K–1 ρw 103 kg·m–3 

μ 18.6×10–6 Pa·s Q 1 

η 1.4   

Table 1 Constants and parameters used in the lumped 
element model. Constants taken from [1, section 3.25]. 
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Fig. 2 Impedances for frequencies between 100 and 2000 
Hertz for the different elements of the lumped element 
model. 
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1 has been used, assuming a relatively strong damping. This 
is justified by the fact that air sac walls are relatively thick 
and generally covered with hair. Finally, the radius of the 
air sac was chosen to be 5cm, its shape to be spherical and 
its walls to be 0.5cm thick. 
The values of the different elements of the circuit were then 
calculated for frequencies between 100 and 2000 Hz (which 
is perhaps a somewhat larger range than for which the 
assumptions were valid). The results are shown in Fig. 2. 
Keeping in mind that parallel impedances are dominated by 
the lowest impedance, and series impedances are dominated 
by the highest impedance, it is clear that a good estimate of 
the total impedance of an air sac for the relevant frequency 
range can be obtained by only looking at the capacity of the 
cavity and the inductance (that is, the mass) of the walls. It 
can also be seen that exact values of stiffness and damping 
of the walls are not necessary for these simplifications to 
remain valid. This is in agreement with what Fletcher [11] 
has found when studying the inflated esophagus of the ring 
dove. However, as will be made clear in the results section, 
in order to understand sound production of vocal tracts with 
an air sac, for certain frequencies the amount of sound that 
is emitted is non-negligible, and therefore radiation has to 
be taken into account in that case. 

3 Preliminary results 

The final goal of modeling air sacs is to construct a 
complete vocal tract with an air sac. In order to do this, an 
air sac model, such as the one described above must be 
connected to an ordinary vocal tract model with a short 
tube. This is illustrated in Fig. 3.  
The air sac and the connecting tube can then be modeled as 
a side branch of the vocal tract model. As supralaryngeal air 
sacs are connected to the vocal tract just above the glottis, 
strictly speaking they are not a side branch of the vocal 
tract, but a parallel branch.  In electrical terms, this means 
that the air sac and the connecting tube form an impedance 
in parallel to the impedance of the vocal tract. This is 
illustrated in Fig. 3.  
The impedance of an air sac with parameters given in 
table 1, and with a connecting tube with a diameter of 1cm 
and a length of 2cm is given in Fig. 4. It can be seen that 
the air sac impedance has a pole and a zero in the frequency 
range under consideration. The pole is caused by the 
resonance of the air sac wall and the air volume in the sac. 
The zero appears because the air sac and its connecting tube 

also act as a Helmholtz resonator. The pole-zero pair 
appears to be typical of an air sac, although their exact 
position varies with size.   
Finally, it can be investigated what happens when an air sac 
is connected to a vocal tract. An example will be studied in 
some detail, as space is lacking for a more systematic 
exploration. However, the example has been selected to be 
biologically interesting, as it has a response function that is 
very similar to that of the howler monkey Alouatta guariba 
clamitans. The air sac dimensions are the same as before, 
and it was connected to a vocal tract of the shape shown in 
Fig. 3. The length of the tract was 11cm, and the radii of the 
cylindrical tubes making up the tract were 1.5cm for the 
wide tubes and 0.5cm for the narrow tubes. The lengths of 
the tubes had a ratio of 1:2:2:1 for a total length of 11cm. 
All the parameters are in the biologically plausible range 
for an animal the size of a howler monkey. The actual 
values however, are ad hoc, and not derived from real 
anatomical data. Potentially data from [15] could be used 
here, but those are from a different species than for which 
recordings were available.  
Without an air sac, the vocal tract has formant frequencies 
of 433Hz and 947Hz. When an air sac is added, these 
frequencies shift up and a new peak appears at low 
frequencies. The result is shown in Fig. 5. In this figure the 
sound output of the tract with an air sac is compared with 
the sound output of a tract without an air sac. Also, the 
sound output at the lips and of the sac are shown separately 
for the tract with an air sac. It can be observed that the peak 
in the air sac’s spectrum (Fig. 4)  reappears in the total 
sound output. When one looks at the sound output at the 
lips, the valley in the air sac’s spectrum also appears. 
However, here the air sac wall radiates sufficient sound to 
make this valley disappear in the total sound output. This 
results in a spectrum with three peaks at roughly 215Hz, 
725Hz and 1215Hz. This corresponds qualitatively with a 
spectrum as measured from a howler monkey (Alouatta 
guariba clamitans), and which had peaks at around 300Hz, 
750Hz and 1400Hz (Fig. 6). Another shared characteristic 
with the howler monkey spectrum is that no extra peaks 
appear at higher frequencies. Parameter tuning could 
undoubtedly improve the fit, and it is likely that an air sac 
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Fig. 3 The physical model (in "mid sagital" section) and the
electrical circuit topology of a vocal tract with an air sac. 
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Fig. 4 Impedance of an air sac. Air sac dimensions are 
given in the text. 
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radius of 5cm is slightly too large to be realistic. A smaller 
air sac would increase the frequency of the first resonance.  

5 Discussion and conclusion 

A lumped element model of a supralaryngeal air sac has 
been presented. It has been shown that the acoustics are 
dominated by the volume of air in the air sac and by the 
mass of its walls, at least for biologically plausible 
dimensions and materials. It was also shown that with this 
model a reasonable approximation of the lower frequency 
characteristics of vocalizations of the Alouatta guariba 
clamitans could be given. This spectrum showed peaks at 
low frequencies that would correspond to a very long vocal 
tract if no air sac were present (a uniform tube of around 
35cm would be needed to produce a similar spectrum).  
However, the model in its present state is only valid for 
frequencies up to approximately 2000 Hz. Above these 
frequencies, the assumptions underlying the lumped 
element approach is no longer valid. In modelling ordinary 
vocal tracts, one would therefore switch to models 
consisting of multiple connected tubes. This is most likely 
not possible in the case of air sacs, because cross-sectional 
dimensions are in the same order as the wave lengths 
involved. The best candidate for modelling air sacs at 
higher frequencies is therefore most likely a finite element 
model. Such models can approximate any shape of object 
by splitting it up into a large number of simple elements. 
Such a model is under development. A disadvantage of 
finite element models is that they are very calculation 
intensive, however. 
It should also be kept in mind that it is not claimed in this 
paper that all air sacs and all functions of air sacs in 
primates are acoustics and can be investigated with acoustic 
models. However, the model (or developments of it) 
proposed in this paper allows to rigorously test predictions 
of the acoustic effect of air sacs on vocalizations. 
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Fig. 6 Spectrogram of Alouatta guariba clamitans 
vocalization. Peaks are around 300, 750 and 1400 Hz.
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