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Forced vibrations of a cylindrical panel freely supported in contour, with regular orthogonal system of stiffeners 
(typical of aircraft fuselage structure) are investigated. The connection of all three components of displacement 
of the shell and of discrete stiffeners as well as of the respective elastic and inertial forces and moments are 
taken into account in the case of excitation by normal and tangential forces. This connection can be described 
correctly at application of the method of space-harmonics. The task of forced vibrations is solved directly except 
the procedure of solving the task in terms of eigen-values. Some illustrative examples of the aircraft fuselage 
panel vibration at different excitation fields are presented. They demonstrate a high efficiency of applying this 
method. Potential possibilities of using this method for solving the tasks related to vibrations of a framed shell 
modelling the aircraft fuselage section and to the sound field in the volume bounded by it are considered. 
 

1 Introduction 

A shell or a panel regularly strengthened by stiffeners in 
two orthogonal directions is the foundation of a wide range 
of engineer constructions, in particular of aircraft fuselage. 
A great number of works is known to exist which are 
devoted to vibrations of stiffened plates, shells and to 
excitation of periodical structure which are elucidated in 
reference [1-3] and in recent publications [4-8]. 
In the majority of work single-dimensional or quasi-single-
dimensional systems stiffened in one direction are 
considered. Unfortunately, the number of works where 
stiffening in two directions is considered and which are of 
prime practical interest are rather limited. Here one can 
note works [5,6].  
Work [5] considers the task related to eigen-frequency 
density of infinite plate with a regular orthogonal system of 
stiffeners. However, the relations obtained in the work 
cannot be directly used for determining the vibration 
velocities. The vibrations of cross-stiffened aircraft fuselage 
fragment are predicted in work [6] but without account for 
the connection between the tangential components of the 
shell and stiffener displacement. Moreover, the method 
proposed in [6] is not efficient for the regular systems and 
substantially limits the possibility of practical evaluations 
of vibrations in the high-frequency region.  
The present work proposes the efficient analytical method 
based on space harmonic expansions [1] for predicting the 
forced vibrations of cylindrical panels regularly stiffened in 
two directions. The method is realized in the cases when the 
boundary conditions for a limited constructions permit 
considering it as a part of the infinite one. The solution 
obtained permits determining all the components of 
vibration velocities directly. In this case there is no 
necessity of preliminary solving the tasks on eigen-values.  
This method takes into account an interconnection between 
three components of panel and stiffener displacement, 
stiffener responses to bend and torsion. Division of all the 
vibration forms accounted in the prediction into 
independent groups and reduction of the solution to the 
system of equations relative to stiffener responses permit 
predicting the vibrations for large aircraft fuselage 
fragments practically over the whole sound frequency 
range.  

2 Prediction relations  

Consider a limited thin cylindrical panel regularly stiffened 
by frames (or rings) in the circular direction and by 
stringers in the longitudinal one (Fig.1). The panel is freely 
supported on the edges. Let the panel of radius R consist of 
Nr spans of dr length between the frames with Ns cells of ds 
width between the stringers in each span. 

 
Fig. 1 Regularly stiffened cylindrical panel. 

Three panel displacement components are connected with 
external distributed forces through vibration equations 
which can be written as follows: 
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where L is the elasto-inertial matrix shell operator with 
dimension 3× 3. Here and below time multiplier exp(i )tω  
is omitted.  
For stringers (s) and frames (rings) (r) the vibration 
equations connect three displacement components and the 
angle of turning with the force vector and the momentum 
and this can be also presented in the matrix form: 

1

, ( ) , ( ) ,

ss
u
ss
v
ss
w

ss
y

qu
qvx x
qw

m RRθ −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= = =
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

s s s s sL w q w q       (2) 

1

, ( ) , ( ) .

rr
u
rr
v
rr
w

rr
y

qu
qvy y
qw

m RRθ −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= =
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r r r r rL w = q w q       (3) 

Acoustics 08 Paris

3100



 

Here s rL ,L  are the elasto-inertial matrix operators of the 
stringer and of the frame, respectively, with dimension 
4× 4. 
Now present the shell and stiffener vibrations and the forces 
exciting them in the form of an expansion in terms of 
harmonic vibration forms ( ( ), ( )x yφ ψ ), satisfying the 
boundary conditions: 
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Here ,W Q  are the vector of generalized displacements and 
forces for panel or for stiffeners, ,s rp p  are the numbers of 
stringer and frame, respectively. The vibration forms are 
combined in ( 1)( 1)s rN N+ +  groups in which 
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m nk d k dα βα β= = . Wave numbers 
are determined as follows:  
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One can show that at the regular arrangements of stiffeners 
for infinite systems or for systems with artificial “halves” of 
stiffeners on edges such groups of forms do not interact and 
are excited independently of each other. 
For each set of indices for the panel and stiffeners we get 
our own frequency-dependent kind of matrix operator 

images K which connects the vectors of generalized 
displacements and forces. Later on the matrices of 
compliance I inverse to the matrices K are used: 
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Now let us consider the connection of panel and stiffener 
vibrations. The generalized stiffener displacements depend 
only on the panel displacements of the same group and they 
can be presented in the following form: 

,

.

s
m n mn

n
r
n m mn

m

αβ β αβ

αβ α αβ

=

=

∑

∑

W E W

W E W
                          (11) 

Here ,n m
β αE E  are the matrices with dimension 4× 3 

transforming the vectors of generalized panel vibration into 
the vectors for stiffeners. Note, that the first ones do not 
depend on longitudinal indices ,m α  and the second ones 
are independent of circular indices β,n . The generalized 
force exiting the panel form is made up of the external 
generalized force, one generalized response of frames with 
the same circular wave number β

nk  and one generalized 

response of stringers with the same wave number α
mk  and 

can be written as follows: 
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Here 0mn
αβQ  is the generalized external force, ,m n

α βF F  are 
the matrices with dimension 3× 4 transforming the 
generalized vectors of support responses into the 
generalized vectors of forces affecting the panel. 
One can exclude the panel displacements from equations 
(8-12) and obtain a system of equations related to unknown 
generalized forces affecting the stiffeners. The system can 
be written conveniently in the matrix form: 
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Here ,A D  are the block-diagonal matrices. We restrict 
ourselves to a certain number of forms in group 
( max max,n n m m< < ). Then the generalized forces acting on 
frames can be obtained as follows: 

1 1 1
0 0( ) ( )r r s− − −= − −Q D CA B W CA W  .        (14) 

Then the generalized forces acting on stringers are simply 
derived 

( )1
0

s s r−= −Q A W BQ  .                       (15) 
Now, when the stiffener responses are known, we substitute 
them into Eqs. (8, 12) and will find the panel vibrations 
sought. 
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3 Examples of calculations 

 
Fig. 2 An example of predicting the generalized 

displacements of panel n.1 under point excitation at the 
middle cell centre. f = 20 000 Hz. 

 
a) 400 Hz, cell centre 

 

 
b) 4 000 Hz, cell centre 

Fig. 3 Excitation of the stiffened panel n.1 at frequencies of 
400 and 4 000 Hz by a harmonic point force applied to the 

cell centre. 

Now we demonstrate an application of the vibration 
calculation method to an example of the stiffened panel 
excitation. To make the calculations, the construction 
parameters were chosen which correspond to the fuselage 
fragments of large and small passenger aircrafts, some 
parameters of which are presented in table 1. The loss 
tangent took the value 0.1η =  for Figs. 3,4,6,7 and 

0.03η =  for Figs. 2,5.  

 Panel n.1 Panel n.2 
Radius, R 3 m 1.3 m 
Spans, Nr× dr 5× 0.5 m 16× 0.45 m 
Cells, Ns× ds 10× 0.2 m 40× 0.15 m 
Skin thickness, h 0.019 m 0.012 m 

Table 1 Some panels parameters 

 

 
a) 4 000 Hz, stringer middle 

 
b) 4 000 Hz, stiffener intersection 

Fig. 4 Excitation of the stiffened panel n.1 at a frequency of 
4 000 Hz by a point force applied to the stringer middle and 

to the stiffener intersection. 
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Fig. 5 The rms-velocities of the panel excited by a point force i tqe ω  applied to the cell centre, to the stringer middle and to the 
stiffener intersection. /c c cV q m ω= , cm  is cell mass, 2cω π= *136 Hz.  

The principal complexity of calculations is associated with 
matrix 1( )−−D CA B  inversion in expression (14). 
Dimensions of this matrix are max max(4 / ) (4 / )s sn N n N× . 
The number of forms sufficient for a correct prediction is 
determined according to test results of generalized 
displacements prediction.  
Fig. 2 presents an example of such a prediction of 
generalized displacements, or more precisely, their radial 
components for point harmonic force applied to the centre 
of the middle cell of panel n.1 at frequency of 20 kHz. The 
generalized forces of point excitation are regularly 
distributed over the whole range of wave numbers or form 
indices, therefore it is convenient to use it as a test field of 
forces. One quarter of ellipse formed by the dominating 
forms in Fig. 2 corresponds to wave numbers determined 
from the relation for running waves in infinite plate 

2 2 2 2( ) /x yk k m Dω+ = . It is seen in figure that for panel n.1 
at this frequency and all the lower frequencies it is 
sufficient to account for n× m = 220× 250 = 55 000 forms. 
Each group of forms in this case includes 22× 50 = 1100 
forms. The matrices requiring the inversion 1( )−−D CA B  
have dimensions 88× 88.   
Figure 3 shows the panel displacements at some moment of 
time. The exciting point force is applied to the cell center 
indicated by the arrow. At frequency of 400 Hz (Fig. 3a) 
both the neighboring and the distant cells are excited. With 
a frequency increase (Fig. 3b) the vibrations become more 
localized within the cell and the vibrations laterally to 
frames are transmitted in a weaker degree.  
Figure 4a shows the force applied to a stringer in the span 
middle. At a frequency of 4000 Hz an intensive vibration 
propagation along the stringer is observed, though the 
vibrations themselves are significantly weaker, than at 
excitation at the cell centre. The minimum vibrations are 
observed when the point force is applied to the stringer and 
the frame intersection (Fig. 4b), despite the fact that they 
well propagate along the frame.  

Figure 5 presents panel rms-velocities predicted for three 
cases of excitation shown in the previous figures for the 
frequency range of 70 Hz – 20 kHz. In the vicinity of 
100 Hz the lowest eigen-form of the construction is excited. 
The point of force application in this case plays no 
significant role. At the frequencies higher than the eigen-
frequency of the individual freely supported cell (136 Hz) 
the construction is more excited by the force applied to the 
cell centre. Beginning with the frequency a little less than 
the stringer span eigen-frequency (440Hz), there is a 
substantional difference between the excitation by the force 
applied to the stringer middle and that applied to the 
stiffener intersection. 

 
Fig. 6 Excitement of panel n.2 at the third harmonic of 

propeller excitation field, f = 264 Hz. 

In considering models of aircraft fuselage, the prediction of 
its vibrations under real excitation fields such as the field 
from a propeller and field of pressure fluctuations of the 
turbulent boundary layer is of practical interest.  
At lower harmonics from the rotating propeller one can use 
a simple orthotropic shell model which doesn’t account for 
stiffener discreteness. However, starting with the frequency 
equal to the first eigen-frequency of the separated cell 
(here 145 Hz) the discrete properties of stiffeners begin to 
manifest themselves.  
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Fig. 6. shows an example of predicting the vibrations of 
panel n.2 under excitation by the third harmonic of the 
acoustic field of the propeller at the frequency of 264 Hz. 
The shell behavior is practically orthotropic, but in the 
region of the maximum excitation the independent 
vibrations of the cells are already reveled.  

 
a) full shell excitement 

 
b) enlarged fragment 

Fig. 7 Momentary picture of fuselage surface vibrations 
exited by pressure fluctuations of the turbulent boundary 

layer. 

Fig. 7a gives a snap of fuselage surface vibrations exited by 
pressure fluctuations of the turbulent boundary layer under 
flight condition. The pressure field parameters correspond 
to flight condition of M = 0.7, height 5 km and 20 m from 
the aircraft nose and they are identical for the whole shell 
surface. The second figure (7b) presents the vibrations on 
an enlarged scale. According to this figure, the forms with 
half-wave lengths of the cell dimension order dominate in 
the shell vibrations at the excitation by the boundary layer. 
These figures are obtained by summing the vibrations at the 
frequencies from 100 to 1100 Hz with a step of 25 Hz.  
Solution of the task related to fuselage vibrations excited by 
the fields of external forces is of importance by itself and as 
a part of solution of the tasks of internal acoustic. The 
benefits of the proposed method based on special harmonic 
expansions consists also in the fact that the result of 
vibration predictions is presented in the form of amplitudes 
of sinusoidal forms. This permits passing directly to solving 
the tasks related to sound wave radiation or to internal 
acoustic mode excitation, using the methods of predicting 
the internal noise, worked out earlier and with account for 
the layers of sound-insulating material and radiation and 
absorption losses [7, 8]. 

5 Conclusion 

The task related to forced vibrations of the cylindrical panel 
with an orthogonal system of stiffeners is solved with a 
correct account for their discreteness and elasto-inertial 
properties. The solution which is compact and permits 
determining all the components of construction vibration 
velocities directly under excitation by normal and tangential 
fields of forces practically over the whole sound frequency 
range is obtained. These components are presented in the 
form of special double trigonometric series. Such a 
presentation of panel velocities substantially simplifies the 
solution of subsequent tasks related to acoustic radiation of 
panels and to forming the acoustic field inside a closed 
volume.  
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