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Fluid dynamical analysis and time-domain modelling of a single reed-mouthpiece-lip system can be used
to inform the formulation of a lumped model of the woodwind excitation mechanism. Coupling this
lumped model to a model of the instrument bore enables computationally efficient generation of sustained
oscillations, using a small number of physical parameters that define the instrument and the way the player
controls them. As such, the embouchure of the player as well as the geometry of the system is taken
into account. In this paper, an attempt is carried out to use the numerically generated sound as an
input to an inversion algorithm for the reed-mouthpiece-lip system. Assuming that the reed motion is
proportional to the pressure difference across it, a relationship can be established between the pressure
and the total flow inside the mouthpiece that allows a first estimation of the physical parameters using
standard optimisation techniques. Currently we are undertaking efforts to apply the inversion to data
measured under real playing conditions, i.e. effectively capturing player gesture information in the form
of physical control parameters.

1 Introduction

Physical modelling of musical instruments simulates the
sound production mechanism, given a set of physical pa-
rameters that govern the instrument oscillations. Con-
cerning single reed woodwind instruments, this can be
achieved by a lumped model of the reed-mouthpiece sys-
tem coupled to a model for the wave propagation in
the bore of the instrument. This constitutes a forward
model of the instrument, that takes as input the pa-
rameters that govern the oscillation of the reed, and
produces the signals of the pressure and flow inside the
mouthpiece (see Figure 1). Inverting the above process
means estimating the parameters from naturally per-
formed sounds. Namely, an inverse model takes as input
the signals of the pressure and flow inside the mouth-
piece and gives an estimation of the lumped model pa-
rameters, as can be visualised in Figure 1. As such,
realistic estimations can be made of the lumped model
parameters, which are difficult if not impossible to be
measured directly. In addition, our understanding of
the physics of the instrument – which normally is em-
ployed for the purposes of investigating the instrument
itself or for sound synthesis – can now be applied to
capture and study the actions of the player. Such an
inverse modelling procedure is presented in the current
paper. In the initial developement of the algorithm, the
input sound for this inverse model is obtained by a time-
domain forward model of the clarinet.

Modelling single reed woodwind instruments using
a time-domain approach has been introduced by Schu-
macher [1] and was then extended and built upon by sev-
eral authors. Time-domain calculations can deal with
non-linear oscillations and are able to model both the
transient and the steady state behaviour of the sys-
tem. The oscillation of the reed is mostly simulated
using a one-mass (lumped) model. Originally formu-
lated as a linear model [1, 2, 3, 4], subsequent stud-
ies introduced models with non-constant parameters [5]
and methods for estimating parameters from distributed
models of the reed [6] such that the vibrational be-
haviour of the lumped model is similar to that of the
distributed model. Modelling the mechanical response
of the reed-mouthpiece-lip system using a two dimen-
sional vibrating plate simulation [7] enables a numerical
estimation of the lumped model parameters, that inher-
ently takes into account any torsional modes of the reed,
that have been proved to affect the sound quality [8, 9].
Furthermore, the effect of the player’s lips to the sys-
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Figure 1: Forward and inverse modelling of the
reed-mouthpiece system, where Ka is the effective

stiffness, Sr the effective reed surface, ym the closing
position of the reed, pm the blowing pressure and p
and u the pressure and flow inside the mouthpiece.

tem has also been modelled; the stiffness and the exact
position of the player’s lips result in different values for
the overall, “effective” stiffness of the system. In the
present paper these parameters are used for a lumped
model simulation, in order to produce the pressure and
flow in the mouthpiece, that are later used as an input
to the optimisation routine. Once realistic parameters
have been estimated, it is possible to use them as an
input to a lumped (forward) model simulating the os-
cillations of the instrument, to resynthsise the original
sound.

In this paper a way is presented to estimate these
parameters, by establishing an analytical relationship
between the pressure and the flow inside the mouth-
piece. Section 2 explains the assumptions that have to
be taken in order to extract a closed form expression for
the pressure-flow interaction. The estimation process is
described in Section 3 , followed by numerical results for
an ideal (linear) and a more realistic (non-linear) case.

2 Assumptions

Although in the forward model the mass and the damp-
ing of the reed are included in the equation of motion
for the oscillation of the reed, for the inverse model it
is assumed that the reed displacement y is proportional
to the pressure difference ΔP across it:

y = CΔP = C(pm − p), (1)
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where C is the compliance of the reed [10], pm the blow-
ing pressure and p the pressure inside the mouthpiece.
The reed opening h can be related to y as

h = ym − y (2)

with ym the closing position of the reed. Under this
assumption the effects of inertia forces due to the mass
of the reed and frictional forces due to internal damping
are neglected. It can be argued that even though these
forces might dominate the transient behaviour of the
system, their effect almost vanishes at steady state (see
Figures 4 and 5 in [11]). Bearing in mind that the input
data will be confined to the steady state of the sustained
sound, the corresponding error will be small, as can be
deduced by the numerical results of Section 3.1.

Concerning the fluid dynamics, we have developed
a refined formulation based on various previous stud-
ies. Regarding the effective opening surface Sf , the
two-dimensional simulation of the reed-mouthpiece sys-
tem [7] provides a mapping between the lumped reed
opening and a curved opening surface. In addition, the
side openings have been taken into account, based on
experimental results [12]. For the flow inside the reed
channel things get more complicated though. Earlier
studies assume a basic formulation of the flow, using
either a Bernoulli flow occupying the whole reed chan-
nel [3, 6, 13, 14] or considering the formation of an air jet
in the reed channel with a constant height [4, 15]. In this
paper a more analytical formulation for the flow in the
reed channel is adopted, using a variable air jet height
predicted by boundary layer flow theory [11, 16, 17].
This height can be shown to behave as a function of the
reed opening h. That is, if α is the vena contracta coeffi-
cient (nondimensional scaling factor of the reed channel
height) then

α(h) = 0.39 ln(h+16 ·10−6)−993.92 sin(h)+4.27 . (3)

A similar flow behaviour has been predicted in [18] using
a dynamical Lattice-Boltzman simulation. This dynam-
ical data obtained for the vena contracta factor displays
a qualitative resemblance to boundary layer flow the-
ory, which suggests that using a theory-based variable-
α formulation might provide a useful refinement of the
lumped reed model. The motivation for the current au-
thors to use this refined model is that it generates os-
cillation data that is more complex and different from
that produced by the simple flow model, and as such it
is more suited to the development of the inverse method,
which will be applied to experimental data. That is, al-
though it has not been experimentally verified that the
parameter α will vary during oscillation according to
equation (3), it is likely to not be completely constant.
The key-point is that an inverse model that can deal
with data generated based on the refined model using
equation (3) will also be able to deal with any data in
which α varies in another way.

The effect of the vena contracta α to the overall flow
can be visualised by plotting the scaled-down opening
surface αSf as a function of the lumped reed opening h.
As can be seen in Figure 2 the resulting function is not
far from linear.
Thus, by introducing an extra parameter λ the flow
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Figure 2: Effective opening surface as a function of the
reed opening, plus a linear approximation to the

corresponding curve.

through the reed channel can be modelled as

uf = G

√
2(pm − p)

ρ
, (4)

with G = αSf ≈ λh being the effective opening surface,
and since h is the reed opening, then λ can be termed
as the “effective width” of the reed. Writing everything
as a function of the reed displacement y to be consistent
with equation (1) yields

G(y) = λ(ym − y) = −λy + λym. (5)

The reed induced flow can be easily calculated as

ur = Sr
dy

dt

(1)
= −CSr

dp

dt
, (6)

which gives for the total flow into the mouthpiece the
following non-linear differential equation.

u = uf + ur

= (−λy + λym)

√
2(pm − p)

ρ
− CSr

dp

dt

= −Cλ

√
2

ρ
(pm − p)3/2 + ymλ

√
2

ρ
(pm − p)1/2

− CSr
dp

dt

= c1

√
2

ρ
(pm − p)3/2 + c2

√
2

ρ
(pm − p)1/2 + c3

dp

dt
(7)

with

⎧⎨
⎩

c1 = −Cλ
c2 = ymλ
c3 = −CSr

⇒

⎧⎨
⎩

Ka = −λ/c1

ym = c2/λ
Sr = λc3/c1

,

since the effective stiffness Ka is the reciprocal of the
compliance of the reed. Note that there is no intention
to solve equation (7). Instead it is used to formulate the
objective function of the optimisation routine, as will be
explained in the next section.

Including the derivative of the pressure with respect
to time (dp

dt ) in the above equation, which is introduced
by the reed induced flow, allows the system to distin-
guish between the opening and closing state of the reed’s
motion. Even though ur is very small compared to the
flow through the reed channel (uf/ur ≈ 102), it still
has a significant effect on the total flow. Namely, if
the flow is plotted as a function of the pressure differ-
ence across the reed, then two different branches appear,
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corresponding to the two different states of the reed’s
motion, as can be seen on Figures 3 and 6 in Section 3.
In order to include the effect of ur to the inverse model,
dp
dt has been estimated during the forward model simu-
lation, using a centered difference approximation.

3 Parameter Estimation

Equation (7) involves pressure and flow inside the in-
strument, which can be obtained from measurements,
plus three mixed parameters (c1, c2, c3) and the blow-
ing pressure pm. An optimisation process can be car-
ried out, matching the measured value of u with the
right hand part of equation (7) allowing the estimation
of pm, c1, c2 and c3. However, the forward model re-
quires the full set of the physical parameters, namely
λ, Ka, ym and Sr to be extracted from the estimated val-
ues of c1, c2 and c3. Including them in the form of the
second last line of equation (7) during the optimisation
process could result in non-physical values for the esti-
mated parameters, since the optimisation routine has to
cope with four different parameters, building up three
products. To deal with that, the value of λ has been
set, observing the data obtained from the forward model
simulation, by matching the slope of the curve in Fig-
ure 2. This allows the estimation of Ka, ym and Sr by
formulating an objective function that equates the two
parts of equation (7) and using the “Nelder-Mead” op-
timisation technique [19, 20].

As will be explained at the end of this paper, the
estimated values of the physical parameters will be used
as an input to a second non-linear optimisation routine.
So, the value of λ will be fine tuned at that stage. For the
time being, and since λ has been termed as the effective
width of the system, it seems reasonable to use the width
of the reed as an initial guess. As expected, this is in
agreement with the value predicted by the slope of the
curve in Figure 2.

Two different cases have been examined in this study.
First the mechanical parameters that govern the oscilla-
tion of the reed are assumed to be constant, so that the
behaviour of the reed-mouthpiece system is confined to
a linear nature. In this case (Section 3.1) the estimated
parameters from the inverse model can be directly com-
pared to the constant values used during the forward
model simulation. Then, in Section 3.2, a non-linear
model of the reed oscillation is used, which is closer to
the real behaviour of the system.

3.1 The Linear Case

In order to ensure the accuracy of the presented tech-
nique, it is necessary to consider the error introduced by
the assumptions that need to be taken during the anal-
ysis of the system. Since the input data for the pressure
and flow signals is currently available only by numerical
simulations, the forward model can been used, for this
first simplified case, to produce these signals, based on
a set of constant values for Ka and Sr, so that any error
introduced will be due to the simplifications made by
neglecting inertia and internal friction, as well as those
related to the opening surface.
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Figure 3: Flow into the mouthpiece over pressure
difference, simulated by the forward model (blue) and

calculated using the estimated parameters (red).
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Figure 4: Several zoomed-in areas of the original plot
in Figure 3.

To evaluate the results, the set of the estimated pa-
rameters is used to calculate the flow from the simulated
pressure data using equation (7). This estimated flow
is compared to the one produced by the forward model
in Figure 3. In this case Ka has been estimated with
a relevant error of −6.39%, and Sr with a relevant er-
ror of 0.43%. Figure 4 zooms in at certain areas of the
graph to show how well the flow is approximated, with
the estimated flow being able to follow the exact shape
of all the curves that appear at the actual signal. The
external blowing pressure used for all the simulations
was 1800 N/m2.

In order to achieve that sort of approximation it is
necessary to distinguish between the two branches that
build up the flow, as explained in the previous section.
The derivative of the pressure in the mouthpiece, with
respect to time, suggests that each branch is treated
separately, with the upper branch corresponding to the
closing state and the lower branch to the opening state of
the reed. Thus computing the derivative of the pressure
during the forward model simulation enables this suc-
cessful branch separation, which provides the displayed
results.

3.2 The Non-linear Case

Since the described technique seems to be working for a
lumped model with constant parameters, the next step
is to apply it to a more realistic case. In this case both
Ka and Sr are changing throughout the simulation, be-
ing functions of the pressure difference across the reed
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Figure 5: Ka and Sr as functions of the pressure
difference across the reed.

(ΔP ), as can be seen in Figure 5.
The estimated values are still constants, so it is not

possible to define a relative error in the same sense as
in the linear case. However it is possible to evaluate the
results, by plotting the flow produced by the forward
model and the one calculated by equation (7) using the
estimated constant values of Ka, Sr and ym. The same
process can be carried out even with noisy data for both
the pressure p and the flow u inside the mouthpiece.
The results for the estimated flow in these two cases are
depicted in Figure 6.
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Figure 6: Flow into the mouthpiece over pressure
difference, simulated by the forward model (blue) and
calculated using the estimated parameters (red) based

on signals generated with non-constant parameters
(top) and based on noisy signals (bottom).
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Figure 7: Comparison of the pressure signals in the
mouthpiece for the forward model (blue) and the

resynthesised sound (red).

The estimation of the flow seems to fail where the
effects of mass (inertia) and damping are significant, i.e.
at the end points of the oscillation of the reed. On the
other hand, for pressure difference values in the range
[500, 3000] N/m2 the estimation is good, even for the
case of the noisy signals. Since the largest part of the
cycle of the pressure difference lies within this range, it
is reasonable to assume that the error, which occurs dur-
ing the parameter estimation is small in relevant terms.
As will be explained in the concluding section, this error
will be further reduced in a future study, using alterna-
tive optimisation tools.

Having estimated the parameters involved, it is also
possible to use them as an input to the forward model,
in order to resynthesise the pressure and flow in the
mouthpiece, that was used as the input to the optimi-
sation algorithm. The pressure signals of the originally
generated sound and the resynthesised sound are com-
pared in Figure 7.

4 Conclusion

An inverse model has been proposed, that can estimate
lumped model parameters of the clarinet reed mouth-
piece system, based on the signals of the pressure and
flow in the mouthpiece. The inversion is based on an an-
alytic, closed-form expression that relates the pressure
and the flow and is used to create the objective function
for a non-linear optimisation routine.

The direct usefulness of the presented results, in
terms of estimating the parameters and reproducing the
flow, as well as resynthesising the produced sound, can
be questioned due to the errors introduced by a series of
assumptions and simplifications. However, the intention
of the authors is to use the results of the current paper as
an input to a future, second stage optimisation routine,
which will be much less limited by simplifying assump-
tions, therefore enabling the optimisation algorithm to
converge to a more realistic set of physical parameters.

The interaction of the player and the instrument is
incorporated in the parameter extraction process in two
ways. First, the formulation of the lumped model is
based on a distributed model of the reed-mouthpiece-
lip system that includes the effects of the player’s em-
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bouchure. Second, the output of the inversion proce-
dure, i.e. the lumped model parameters, directly rep-
resent how players adjust their embouchure in order to
shape the sound.
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