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In the past decades a variety of new highly porous materials with unusually small pores have been manufactured. 
In aerogels, for instance, pores can be less than 20 nm in diameter. The conventional models have to be modified 
when applied to describe acoustical properties of those materials. The non-slip condition on a pore surface is no 
longer valid and needs to be replaced by the Knudsen boundary condition. In attempt to provide an insight into 
the behaviour of microfibrous materials, an analytical model has been developed, which accounts for the 
boundary slip in a medium consisting of rigid parallel fibres assuming different directions of sound propagation 
with respect to fibres. It has been shown that the presence of the boundary slip leads to a significant change in 
model predictions. For instance, in a material with fibre radius 120 nm and 95% porosity the sound speed 
decreases and attenuation increases by more than 20% compared to the values obtained assuming no boundary 
slip. The effect is stronger for smaller size fibres, lower porosity values and for sound propagating parallel to 
fibres. Numerical computations have been performed to simulate oscillatory flow around the cylindrical fibres 
assuming Knudsen boundary conditions and the results have been compared with the analytical model 
predictions

1 Introduction 

Although the majority of porous materials used 
currently in noise control applications have pores larger 
than a micrometer, a substantial number of new materials 
are being created with considerably smaller pores. In 
aerogels, for instance, pores can be as small as 20nm in 
diameter. In activated carbon, a considerable amount of 
pores range between 50 nm and 1000 nm. It turns out that 
conventional models have to be used with caution when 
predicting acoustical properties of the materials with such 
small pores. 
Until recently all microstructure based models assumed the 
validity of no slip boundary conditions on the pore or 
inclusion surfaces. Those conditions are violated though if 
sound propagates in a highly confined volume [1] with a 
linear dimension a comparable to the molecular mean free 
path meanl .  For air at normal conditions nmlmean 60≈  
and it grows as gas pressure decreases. The importance of 
the boundary slip is determined by the value of the 
Knudsen number defined as the ratio of the molecular mean 

free path to the characteristic linear size a: 
a

l
Kn mean= . 

For sound propagation in a porous material, the difference 
between slip and no-slip boundary conditions can become 
important when the molecular mean free path is comparable 
to the average pore or inclusion size. Strictly speaking, the 
continuum, i.e. based on the equations of fluid mechanics, 
approach to sound propagation in a confined space can only 
be used in a so called Knudsen regime when 1.0≤Kn and 
imposes lower limit on the pore or inclusion size: 

nmla mean 60010 =≥ . However, there are numerous 
evidences based on the comparisons with both 
measurements [2] and molecular dynamics simulations [3] 
that continuum approach still provides a good 
approximation even at much higher values of Knudsen 
number. In [2] for instance good agreement between data 
and the theory for the rarefied gas flow through the 
cylindrical channels is shown for Knudsen number as high 
as one. Several recent publications have been looking into 
the boundary slip effect on sound propagation through 
microporous materials using microstructure based 
approach. The homogenisation theory has been extended to 
account to the wall slip in [4,5]. Papers [2,3] focus on the 
rigid porous materials where the non-slip boundary 
condition on the pore wall has been replaced by Knudsen 

boundary conditions, relating the tangential velocity on the 
rigid surface to the stress component. In several 
publications the elasticity of the frame has been accounted 
for assuming either empirical dependence of the slip 
velocity on the pore wall on frequency  [6] or Knudsen 
boundary conditions [7]. In [2] the influence of thermal slip 
on complex compressibility function has been investigated. 
In all these publications the pore geometry was restricted to 
straight cylindrical channels. However there are certain 
types of porous materials for which this assumption seems 
to be too crude. In aerogels, for instance, porosity can be 
higher than 0.9 [8] while the cylindrical pore approximation 
is only applicable for the values below 0.785.  In this paper, 
the model is developed for the acoustical properties of 
fibrous materials allowing for both velocity and 
temperature boundary slip. This was done in attempt to 
reflect the geometry of real highly porous fibrous 
absorbents. The fibres are assumed to be cylindrical and  
arranged in a regular square lattice. This simplification 
allows analytical approach and is convenient for the 
investigation of different regimes of sound propagation. 
Two fibre orientations in respect to sound propagation 
direction are considered to demonstrate the dependence of 
the slip effects on the geometry. The paper is organised as 
follows. In Section 2 the problem of oscillatory flow around 
cylindrical fibres is solved analytically. The method is 
based on the “cell model” used in [9] which is generalised 
to allow for the boundary slip. The problem of the heat 
transfer from the fibre has been solved accounting for the 
thermal slip. The analytical expressions for complex 
density and complex compressibility functions are derived. 
Section 3 describes numerical solution of the problem using 
finite element method. Comparisons between analytical and 
numerical results are presented here. Main findings are 
summarised in Conclusion.  

2 Analytical model for the acoustical 
properties of regular array of cylinders 
with nonzero boundary slip 

2.1 Complex tortuosity – fibres 
perpendicular and parallel to sound 
propagation direction  

A detailed analysis of the approach presented in this part of 
the paper, assuming however non-slip boundary conditions, 
can be found elsewhere [9]. Here the brief outline of the 
necessary equations and their solutions as well as the 
modifications of the boundary conditions is presented.  
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The motion of incompressible fluid (air) around an 
infinitely long cylindrical fibre of radius a under oscillatory 
with angular frequency ω  constant amplitude pressure 
gradient along x-axis x

ti
x ePe rω−∂ (Figure 1) is governed 

by the following equations: 

0
,// 2

0

=
∂−Δ+−=−

udiv
ePauapdgraui xx

r

rrrr ηωρ  (1) 

 
 
 
 
 
 
 
 
 
 
 
 

 Figure1 Geometry of the problem 
 

here ur  and p are particle velocity and pressure of the air. 
All spatial coordinates are normalised by the fibre radius a. 
Due to the symmetry, in cylindrical coordinates ( )zr ,,θ , 
the particle velocity does not have a z-component and does 
not vary in z-direction.  
Two boundary conditions are set on the fibre surface, i.e. 
condition of zero normal velocity component 

( ) 01 ==rur       (2) 

and Knudsen boundary condition for the tangential velocity 
component 

( ) ( ) ητ θθ /11 === rKnru r ,   (3)     

where ( )ruuru rrr // θθθθ ητ −∂+∂=  is the 
component of the stress tensor. 
In order to account for the influence of neighbouring fibres, 
each cylinder is assumed surrounded by an imaginary cell, 
whose radius is chosen so that the volume fraction of air in 
each cell is the same as the porosity φ  of the whole array, 

i.e. φ−= 1/1outr . Zero vorticity is assumed on that 
boundary 

( ) 0== outrrucurlr             (4) 

The total pressure drop over the boundary of the cell is 
equal to the macroscopic pressure gradient, i.e 

0)( == outrrp .              (5) 

Equations (1) with boundary conditions (2)-(5) fully 
determine the flow characteristics within the cell. Let’s 

assume that Acurlvu
rrr += , where xevv rr = , 

( )0/ ωρiPv x∂= and A
r

 is a vector potential. Due to the 

symmetry, in cylindrical coordinates ( )zr ,,θ the vector 

potential has z-component ( ) θsinrAAz = only and 
components of particle velocity are: 

( ) θθ θ cos/)(/cos rrAvrAvu zr +=∂+=   

( ) θθθ sin)('sin rAvAvu zr +−=∂−−= .     (6) 

Vorticity of ur  can now be calculated as 

( )
( ) zz

zrr

erferrArArrA

eruuruucurl
rr

rr

θθ
θθθ

sin)(sin/)()(''/)('

//
2 =−+−

=∂−∂+=

where  

( ) ./)()(')( 'rrArArf +−=     (7) 

It can now be easily shown that pressure is equal to 

( ) arrfrAp /cos)(')('2 θκη −=    (8) 

where  

ηωρκ /0ia= .                 (9) 

The absolute value of parameter κ is equal to the ratio of 
the fibre radius and the viscous boundary layer thickness 

0/2 ωρηδ =visc .. 

Equations (1) can be reduced now to a single equation for 
the function f(r) 

( ) 0//)(''' 22 =+−− frfrrfrf κ  

with the solution 

( ) ( )rJrHrf κβκκακ 11)( −−= , 

where ( )xH1  and ( )xJ1  are first order Hankel and Bessel 
functions, and α  and β  are arbitrary constants. 

Further solution of (7) leads to the following expression for 
)(rA  

( ) ( ) κκβκκαδγ ///2/)( 11 rJrHrrrA −−+−= , 

where γ  and δ  is another pair of constants. Now from 
equations (6) and (8) general solution for the velocity 
components and pressure can be found 
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Constants α , β , γ  and δ are determined from the 
boundary conditions (2)-(5) as 

( )

( )⎟⎟⎠
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Complex tortuosity is defined as the ratio of the 
macroscopic pressure gradient Px∂− in the direction of 
the sound propagation to the resulting averaged force per 
unit volume of the fluid xx viF 0ωρ−= : 

( ) ( )xx uiP 0/ ωρωα ∂=  

As all the fluid is contained within the cells the velocity 
averaging is performed over the cell volume [9]: 

( ) cell

r

xx Srdrdruu
out

/,
2

0 1
∫ ∫=
π

θθ , 

where θθ θ sincos uuu rx −= and ( )φπφ −= 1/cellS  
is the normalized cross sectional area of the cell. The final 
expression for the complex tortuosity, i.e. 
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depends amongst other parameters on the Knudsen number 
Kn. In this equation subscript ⊥  indicates sound 
propagating perpendicular to cylinder axes.  
If the oscillatory pressure gradient direction is parallel to 
fibre axis z, incompressible fluid has just one velocity 
component along this axis, which varies with the distance r 
from the fibre centre and independent on the angle θ . 
Equations of motion (1) in this case should be replaced by 
one simpler equation: 

( ) ,// 2
0 Paruuui zzrzrrz ∂−∂+∂=− ηωρ         (11) 

Its general solution is 

( ) ( ) ( )rHrJiPru zz κβκαωρ 01010/)( ++∂=           

Coefficients 1α  and 1β  can be found from Knudsen 
boindary condition on the fibre surface 

( )1)1( =∂== ruKnru zrz                       (12) 

(the fact that zrr u∂=ητ θ  was used here)  

and boundary condition of zero vorticity on the outer cell 
surface 

( ) 01/1 =−=∂ φruzr                        (13) 

as ( )
( ) 1

2
0

0
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1
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Particle velocity averaged over the cell volume zu  in this 
case can be reduced to the following integral  
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Finally, following the equation for the complex tortuosity 
the following expression is obtained 
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where subscript  indicates sound propagating parallel to 
cylinder axes. 
 

2.2  Complex compressibility  
 
Now let’s consider the heat transfer between a cylindrical 
fibre subject to oscillating pressure tiPe ω−  and the 
surrounding fluid. The amplitude of the temperature 
distribution T in the fluid does not vary with the sound 
propagation direction and can be found from the equation 
of heat transfer [2]: 

( ) ( )pprrrrpr cPNrTTTN 0
22 /)(/ ρκκ =∂+∂− (15) 

presented here in cylindrical coordinates. Here prN  is the 
Prandtl number. The boundary condition on the fibre 
surface accounting for the thermal slip is: 

( )( )prr NTKnT 1/2)1( +∂= γγ ,           (16) 

where γ  is adiabatic constant, and the zero temperature 
gradient is assumed on the outer cell boundary [10] 

( ) 01/1 =−∂ φTr .             (17) 

Comparison of equations (15)-(17) with (11)-(13), suggests 
that

( ) ( )
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⎠
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+∂
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=
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2,
/
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, 2
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2
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γω

η
ρκ

ω
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prz
z

ppr

N
KnNu

Pa
cPN

KnT

 Using this relationship and the following definition of the 
normalised complex compressibility function  

( ) ( )( )PKnTRKnC gas /,1, 0 ωργω −=  

where gasR  is a specific gas constant, the relationship 
between complex compressibility of the cylinder array and 
its complex tortuosity fα  can be easily derived: 

( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−−=

1
2,/1,
γ
γωαγγω

pr
pr N

KnNKnC , (18)         
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3 Model predictions and comparisons 
with FEM results 

Complex density and complex compressibility functions 
obtained in the previous section can be used for calculation 
of the characteristic impedance and the propagation of the 
array using the following equations  

( ) ( )

( ) ( ) ( ),,,,

,,/,),(

,,

,
0

,

KnCKn
c

Knk

KnCKn
c

KnZ

ωωαωω

ωωα
φ
ρ

ω

⊥⊥

⊥⊥

=

=
         (19) 

and hence fully determining its acoustical properties. Here 
the influence of the boundary slip on sound speed 

( ) ( )( )KnkKnc ,Re/, ,, ωωω ⊥⊥ =  and attenuation 

coefficient ( ) ( )( )KnkKn ,Im, ,, ωωα ⊥⊥ =  will be 

investigated and compared with the results of numerical 
computations. The latter have been obtained using the FEM 
software Comsol Multiphysics. Second-order Lagrangian 
elements have been used to model the velocity components 
and temperature distribution, whereas the linear elements 
approximated the pressure field. An oscillatory forced 
Stokes flow problem has been solved assuming that the 
total force vanishes and the periodic boundary conditions 
are applied on the boundary of the square cell. The latter 
has been imposed to allow for interactions between the 
circular cylinders. An arbitrary reference pressure was 
prescribed in one of the vertices of the square cell. Knudsen 
boundary condition was applied at the cylinder surface.The 
macroscopic velocity was obtained from the solution of the 
perpendicular/parallel oscillatory forced Stokes flow 
problem by averaging over the cell and complex tortuosity 
has been then calculated from its definition. The oscillatory 
heat conduction problem has been solved in a unitary 
square cell assuming thermal slip on the cylinder surface 
and periodicity conditions on the cell boundary. The cell 
averaged temperature was then estimated from the solution 
of the above problem and the dynamic compressibility was 
calculated.  Using complex tortuosity and complex 
compressibility functions, the speed of sound and 
attenuation coefficient has been found.  
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Figure 2. Sound speed and attenuation coefficient, 

analytical model for sound parallel (1) and perpendicular 
(2) to cylinder axes.  Cylinder radius 200 nm, porosity 0.95. 

Dashed line – no-slip, solid line – Kn=0.3.  
 
Predictions of the analytical model, shown in Figure 2, 
confirm, that the correct account of the boundary slip leads 
to higher sound speed and lower attenuation coefficient 
values compared to no-slip case. To quantify the slip 
influence the relative increase of the sound speed 

( ) ( ) ( )0,/0,, ωωω ccKncc −=Δ and relative decrease 
of the attenuation coefficent 

( ) ( ) ( )0,/0,, ωαωαωαα −=Δ Kn have been 
calculated for several values of the Knudsen number and 
are presented in Figure 3 assuming sound propagation 
parallel to cylinder axes. For the array of cylinders with 
a=120nm for instance, both sound speed and attenuation 
coefficient calculated assuming no-slip boundary conditions 
differ by more than 20% from values obtained with 
corrected boundary conditions in the whole range of 
frequencies. The error, naturally, decreases as the cylinder 
radius increases. Relative errors obtained for the array of 
fibres with axes perpendicular to sound propagation 
direction are lower than those shown in Fig.3, which means 
that the effect of boundary slip is weaker in this case. 
However, those values are still considerable, reaching 12% 
for a=120nm. Comparisons between numerical and 
analytical results show excellent agreement for high 
porosity arrays. However, for relatively dense arrays 
analytical model becomes inaccurate. The relative error 
between the analytical and numerical results for the sound 
speed assuming propagation parallel to fibre axes is shown 
in Figure 4. 
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Figure 3. Relative influence of boundary slip  
on attenuation coefficient and sound speed at different fibre 

radii as a function of frequency, porosity 0.95, fibres 
parallel to sound propagation direction. Analytical model. 
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Figure 4. Relative error of the analytical model compared to 
FEM simulations, sound speed, Kn=0.3  

 
 

4 Conclusion 
 
A simple analytical model, presented in this paper, 
confirms that the influence of the boundary slip on the 
acoustical properties of microfibrous absorbents can be 
very significant. Moreover, it is demonstrated, that this 
influence depends on the material geometry, not just on the 

size of the inclusions. For the array of cylindrical fibres 
effect of the boundary slip is more noticeable when sound 
propagates parallel to the fibre axes. In this case, even for 
the array of fibres as with radius as big as 200 nm the new 
model predictions of sound speed and attenuation 
coefficient vary by more than 15% compared to no-slip 
case. The analytical model is shown to be in a good 
agreement with numerical results when the array porosity is 
high. This leads to the conclusion that it can provide a basis 
for modelling the acoustical properties of real microfibrous 
materials, such as aerogels. It can also serve as a reasonable 
approximation for materials similar to activated carbon, 
which is impossible to model as a network of cylindrical 
pores due to its high porosity. 
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