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A semi-empirical model for complex tortuosity function, which satisfies physically correct low and high frequency limits and 
allows analytical transformation into the time domain has been developed. It is based on the assumption, that a network of 
pores with two characteristic sizes can approximate the internal structure of the material, and thus requires the knowledge of 
two relaxation times. It is proven, however, that the model can predict sufficiently well the acoustical properties of rigid porous 
materials with various microstructures when is complete with the tortuosity as an additional parameter. It is shown that 
relaxation times can be easily related to the “equivalent fluid” model parameters. It is shown that the extended version of the 
model which accounts for the thermal effects can also be used for time-domain computations.  

 

1 Introduction 

The equations for pressure p and particle velocity v 
variations in a plane wave of angular frequency ω can be 
written in the following form 

 ( )0 ,xi v pωρ α ω− = −∂  ( ) 2
0 ,xi C p c vω ω ρ− = − ∂  

where dimensionless complex density ( )α ω and complex 

compressibility ( )C ω describe viscous and thermal effects 
in a porous medium. One of the most successful models for 
the acoustical properties of rigid porous materials has been 
suggested in [1] where physically correct solutions for the 
complex tortuosity function in the limiting cases of low and 
high frequencies have been formulated 
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which satisfactory interpolates between these limits was 
constructed and was proven to give reliable results for 
many rigid porous materials. 
Similar approach to modelling complex compressibility 
function ( )C ω has been later suggested in [2, 3] and 
resulted in the following approximation  
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satisfying physically correct low and high frequency limits  
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The combined model requires knowledge of flow resistivity 
σ , thermal permeability 'k , tortuosity α∞ , porosity φ  

and characteristic viscous and thermal  lengths Λ  and 'Λ  . 
They all, in principle, can be measured non-acoustically.  
Another approach to the modelling has been developed in 
[4, 5] and is based on viewing viscous and thermal 
diffusion in porous media as a relaxation process. The 
model approximates the complex density function using 
only two parameters: tortuosity and characteristic viscous 
timeτ . One more parameter has to be introduced to 
account for thermal effects. Unfortunately to satisfactorily 
approximate physically correct limits (1) the model would 
require different values for τ  at low and high frequencies. 
The model extension, which includes two viscous 
relaxation times has been developed in the same publication 
which overcomes this difficulty.  
The interest in time domain analogues of these models has 
grown recently in connection with the successful 
application of time domain computational models in 
atmospheric and room acoustics. When model for sound 
propagation in air is formulated in the time domain, 
common acoustic impedance boundary conditions for the 
ground or absorbing walls can not be used and the explicit 
formulation of the time domain model for the porous 
medium is required. Inverse Fourier transformation of the 
governing equations can be performed analytically only for 
specific functions ( )ωρ  and ( )ωC . Functions (2) and (3) 
do not allow analytical conversion into the time domain for 
the whole range of frequencies. However in the lower 
frequency limit the conversion is possible [6]. The time 
domain formulation which is applicable to high frequencies 
(where inertial effects become stronger) has been developed 
recently [7] and relates to Basset history term for the 
viscous drag force. In terms of pulse duration those two 
versions describe very long or very short acoustic pulses 
(comprising of rarefaction and compression phases) 
respectively but not the pulses of intermediate duration for 
which both viscous and inertial effects are equally strong. 
Recently it was found [8] that the simplest version of the 
relaxation model can be easily converted into the time 
domain for all frequencies but due to its above mentioned 
limitations the description of all duration pulses with just 
one relaxation time is not possible. The version of the 
model with two relaxation times does not allow analytical 
transformation into the time domain.  
In this work the problem of designing empirical complex 
tortuosity and complex compressibility functions which 
satisfy physically correct low and high frequency limits (1) 
and (4) and can be transformed analytically into the time 
domain for the whole range of frequencies is addressed.  
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2 Models for the networks of 
cylindrical pores 

2.1. General time domain form of the 
momentum conservation equation 
 
The most general form of complex tortuosity function 
which follows from [9] is 
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where nΘ are viscous relaxation times which are related to 

n-th eigenvalue nε of the time domain pore fluid flow 

problem as 
n

n νε
1=Θ . Coefficients 2

na  satisfy the 

following conditions: 2

1
1,n

n
a

∞

=
=∑   

φσα
ρ
∞

∞

=

=Θ∑ 0

1

2

n
nna . 

Inverse Fourier transform of the momentum conservation 
equation with expression (5) for complex tortuosity leads to 
the following time domain equation 
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Finding coefficients na  and nΘ  analytically is possible 
for the very simple pore geometries only. However, even in 
those cases sums in (6) can be slowly converging and hence 
approximate solutions should be used. 

2.1. Network of identical straight 
cylindrical pores – relaxation function 
For the network of identical straight cylindrical pores 

n
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where 
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4

2a= , a is the pore radius and nj  is Bessel 

function zero of order n so that ( )0 0nJ j = .  

Substituting these values into (6) leads to the following 
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In frequency domain, complex tortuosity function for the 
network of straight cylindrical pores can be calculated 
analytically and is equal to 
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It has been shown [4] by direct comparison in the wide 
range of frequencies that this function can be reasonably 
well approximated by the following “relaxation function” 
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The use of this function leads to the following approximate 
time domain equation  
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Comparison of the exact equation (5) with this one leads to 
the conclusion that approximation is based on the following 
replacement 
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Comparison of the two functions is shown in Figure1. They 
differ considerably only in the range of x where  their 
absolute values are extremely small which means that their 
integrals are close to zero anyway. Consequently 
convolution integral in (9) provides a very good 
approximation to the exact time domain equation (7) of 
sound propagation in network of straight cylindrical pores. 
 

Fig.1 Comparison of  functions f(x) and g(x) 
Solid line – f(x) , i.e. exact solution, dashed line – g(x) , i.e.  

approximate solution. 
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Similarly to the complex tortuosity, a relaxation–type 
complex density function was introduced in [4], 

( ) 11
1 e

C
i

γω
ωτ
−= +

−
,               (10) 

which requires additional relaxation eτ  time and 
provides a good approximation to the exact solution of the 
heat transfer problem in the cylindrical pore with 

ττ pre N= . As shown in [8] the use of this function 
allows time domain formulation of the continuity equation: 
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2.1. Two types cylindrical pore networks–
relaxation functions and time domain 
equations 
 
Now let’s consider a network of straight cylindrical pores 
with radii am, where m=1, 2…M and relative porosities mφ , 

so that 
1

M

m
m
φ φ

=
=∑  is the total porosity of the material.  

 
 
 
 
 
 
 

Fig.2 Straight pore network consisting of different size 
pores 

 
According to [10] in this case the permeability of the slab is 
the arithmetic average of the permeabilities of each 
network. In terms of complex tortuosities this can be 
reformulated as 
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where each network tortuosity was approximated with 

relaxation function (7) with 
2
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compressibility functions can be formulated using the 
relationship with complex density valid for the cylindrical 
pores [11] and result in the following 
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This result is in line with the argument mentioned earlier as 
complex compressibility is proportional to dynamic thermal 
permeability and hence has to be calculated as arithmetic 
average. The inverse Fourier transform of the momentum 

and mass conservation equations leads to the following set 
of equations for the network in consideration: 
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Fig.3 Straight pore network consisting of layers with 
different pose sizes and porosities 

 
 

The effective permeability of the composite material shown 
in Figure 3 should be calculated as harmonic average of the 
phase permeabilities [10]. Reformulation in terms of 
tortuosity and the use of relaxation function approximation 
leads to the following 
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where the total porosity of the material is now calculated as 
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= Ω∑  and mΩ  is volume fraction of the 

composite occupied by each layer. The resulting expression 
(14) is in fact quite similar to the “sectionally uniform tube 
model” described in [12]. According to the arguments 
mentioned above, the complex compressibility function 
follows the same summation law as permeability and is 
equal to 
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This result is different from [12], the reasons for this are 
being investigated. 
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Following algebraic manipulations described in [8] the time 
domain equation can be now derived for the network shown 
in Figure 1  
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3 Model generalization for the 
arbitrary geometry rigid porous 
materials  

Here the simple semi-empirical models allowing analytical 
time domain representation will be introduced based on the 
relaxation functions derived for the cylindrical pore 
networks in Section 2.  
Consider the following function 
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It can be seen as a simplification of (11) assuming network 
of pores with two different sizes and 1 2 0.5φ φ φ= = . It 
can be easily shown that the use of two relaxation times  
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is the shape factor, allows matching of both correct low and 
high frequency limits (1) provided that 1≥M . 
Similarly, the complex compressibility function, introduced 
as a simplified version of ( )ωC  
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satisfies limits (4) with the following pair of relaxation 
times 
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when ' 1M ≥ and the thermal shape factor is defined as 
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Another function, based on the complex tortuosity (14) for 
the material shown in Figure 2 assuming two layers with 
the same values of mmφΩ , 
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also matches limits (1) with 
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provided that 15.0 ≤< M . 
Similarly, the expression for the complex compressibility 
function can be derived from (15) as follows 
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This function satisfies correct limits (4) with  
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and requires 0.5 ' 1M< ≤ . 
It is worth noting that for M=0.5 one of the relaxation times 
(24) and (26) approaches infinity.  
Application of both sets of functions, i.e. (17), (20) and 
(23), (25), results in analytical time domain momentum and 
continuity equations. 
Functions (17) and (20) give 
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while (23) and (25) allow the following transformation 
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The values of shape factors M and M’ depend on the pore 
scale geometry as well as on the material porosities. There 
are numerous experimental as well as numerical indications 
[13], that viscous shape factor M is greater than unity in 
granular materials resembling close packings of spheres and 
equations (27) should provide adequate time-domain 
description of sound propagation in these materials. At the 
same time, FEM predictions shown in Figure 4, confirm 
that viscous shape factor is smaller than one for the array of 
circular cylinders assuming that sound propagates 
perpendicular to their axes. 
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Fig.4 Dependence of viscous shape factor M on porosity, 

regular array of cylinders 
 
This means that set of equations (28) could be applicable to 
relatively low porosity fibrous materials. 

6. Conclusions 
Two sets of semi-empirical time domain equations 
describing sound propagation in rigid porous materials have 
been suggested. The first set (27) is suitable for materials 
with viscous and thermal shape factors exceeding one, such 
as dense packings of spheres. In another set (28) it is 
assumed that both shape factors are smaller than one but 
still larger than 0.5. For each model two pairs of viscous 
and thermal relaxation times have been derived which 
match physically correct limits for complex tortuosity and 
complex density functions. This allows using the new time 
domain equations for the description of short and as well as 
long pulses propagating in porous materials. Comparisons 
with other model predictions for some types of granular 

materials as well as with the transmission data are presented 
in the companion paper. 
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