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Various methods have been shown to compute the Speech Transmission Index (STI) using speech as a probe 
stimulus [Goldsworthy & Greenberg, J. Acoust. Soc. Am., 116, 3679-3689, 2004]. Frequency-domain methods, 
while accurate at predicting the long-term STI, cannot predict short-term changes due to fluctuating 
backgrounds. Time-domain methods also work well on long speech segments and have the added potential to be 
used for short-time analysis. This study investigates the accuracy of two time-domain STI methods: Envelope 
Regression (ER) and Normalized Correlation (NC), as functions of window length, in various acoustically 
degraded environments with multiple talkers and speaking styles. Short-time STIs are compared with a short-
time Theoretical STI, derived from octave-band signal-to-noise ratios. For windows as short as 0.3s, the ER and 
NC Methods track the short-time Theoretical STI and both the Theoretical and ER Methods converge to the 
long-term result for windows greater than 4s. Short-time STIs are also compared to intelligibility measurements 
on clear/conversational speech. Correlations between STI and intelligibility scores are high at the sentence and 
word levels and, consistent with the scores, short-time methods predict a higher average value of STI for clear 
than for conversational speech.  

1 Introduction 

The Speech Transmission Index (STI) is a physical metric 
demonstrated to be correlated with speech intelligibility [1]. 
A variety of methods have been proposed to compute the 
STI [2-12]. Some of these methods use speech as the probe 
stimulus rather than artificially modulated noise as 
originally proposed by Houtgast and Steeneken [13]. Of the 
speech-based methods, a subset have been shown to 
generate the same value as the theoretical STI, which is 
based on signal-to-noise ratio (SNR) and reverberation time 
(RT) [8, 12, 14]. To date, all speech-based approaches have 
used very long speech segments to generate a metric. 
Consequently, they have not been used to predict short-time 
changes or word-by-word intelligibility. The current work 
evaluates the Envelope Regression (ER) and Normalized 
Correlation (NC) speech-based methods using short 
windows (~1/3 s) to compute STI values in environments 
with stationary noise or multi-talker babble backgrounds for 
speech from multiple talkers speaking conversationally and 
clearly at normal rates (clear/norm) [15]. One set of speech 
materials was previously used in listening experiments and 
the performance of both methods are compared to the 
listeners’ responses at both the sentence and word level. 
Additional analyses on the asymptotic behavior of the 
metrics in noise plus reverberation conditions can be found 
in Payton and Shrestha [16]. 

2 Methods 

For both the ER and NC techniques, the clean and the 
degraded signals, digitized at 20 kHz using a 9.5 kHz 
antialiasing filter, were filtered by a bank of sixth-order 
octave-wide Butterworth band-pass filters with center 
frequencies from 125 Hz to 4 kHz and a sixth-order 
Butterworth high-pass filter with a cutoff frequency of 6 
kHz. For each band, i, the clean and the degraded signals 
were then squared and lowpass filtered with a cut off 
frequency of 50 Hz using a 10 ms Hamming window. The 
intensity envelope signals xi(t) and yi(t) were downsampled 
to 134 Hz to reduce computation time. 
 

The modulation metric for each octave band, Mi, is 
computed from the envelope signals using Eq.(1) for the 
ER method  
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where µxi and µyi  are the means of xi(t)  and yi(t) 
respectively. Mi is computed using Eq.(2) for the NC 
method 
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[12]. The apparent signal-to-noise ratio (SNR) in each 
band, aSNRi, is computed as 
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and then clipped to the range of +15 and -15 dB. The aSNR 
in each band is converted to a corresponding transmission 
index, TIi, according to Eq.(4): 
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Finally, the overall STI (ranging from 0 to 1) is calculated 
as a weighted average of the TIi values: 
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where the αi’s and βi’s correspond to the octave weighting 
and redundancy correction factors respectively given in the 
IEC standard [4]. 
 

2.1 Theoretical STI 
In order to compare the short-time metrics with a standard, 
the theoretical STI is also calculated - over the same time 
windows as the speech-based STI. The clean speech and 
noise signals are passed through the same bank of octave 
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filters as before. The modulation index in each band, Mi, is 
then calculated [17] as 
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where Si and Ni are the signal and noise powers 
respectively. The theoretical STI is then computed using 
Eq.(3) through Eq.(5). 

2.2 Stimuli 

The stimuli used in this study are 50 nonsense sentences, 
either spoken conversationally by a male talker or both 
conversationally (conv) and clearly at normal rates 
(clear/norm) by both a male and a female talker. Nonsense 
sentences are grammatically correct but do not provide any 
semantic context to help word identification e.g., “His 
guests could teach his turnpike”. Each sentence contains 
four to six key words corresponding to the nouns, 
adjectives, verbs and adverbs in the sentence. 
 

The clear/norm speaking style is not produced naturally. 
The talkers were trained to speak this way in order to 
remove a significant difference between clear and 
conversational speaking styles: the rate at which they are 
spoken. Normally, clear speech is produced at about half 
the speaking rate of conversational speech [15]. 

2.3 Evaluation Conditions 

For the first corpus of speech materials, results for two 
conditions will be shown: concatenated sentences plus 
stationary speech-shaped noise at 0 dB SNR and sentences 
plus multi-talker babble at 0 dB SNR. For the second 
speech corpus, stationary speech-shaped noise at -1.4 dB 
was added to individual sentences to match the stimuli 
presented to listeners. 

3 Results 

3.1 Comparison of Short-Time Metrics to 
Theoretical STI 

Figure 1 plots regression analyses for speech in stationary 
noise at 0 dB SNR versus the Theoretical STI computed 
over the same time window. 
 

The left plot corresponds to the ER method and the right 
plot corresponds to the NC method. Each point represents 
the STIs for a windowed segment of the speech. A 0.3 s 
analysis window was used for these plots. A total of about 
1.75 minutes of speech were analyzed. 
 

Note that although the nominal SNR was 0 dB, individual 
windowed STI values vary from 0 to 0.7. For both metrics, 
the regression “goodness of fit” term, R2, is very high: 0.99 
for the ER method and 0.96 for the NC method. The most 
significant difference between the two metrics is that the 
NC method results are shifted up relative to the ER method 
and the theoretical STI. 
 
 

Fig. 1 Regression Analysis - 0dB Speech-Shaped Noise 
Comparison of ER (left plot) and NC (right plot) methods 

with theoretical STI computed over 0.3 s windows. 

 
Figure 2 presents the regression analyses for speech plus 
multi-talker babble at 0 dB SNR for the two metrics. While 
the R2 values are slightly less: 0.93 for both, the fits are still 
extremely good. 

Fig. 2 Regression Analysis - 0dB Multi-Talker Babble 
Comparison of ER (left plot) and NC (right plot) methods 

with theoretical STI computed over 0.3 s windows. 
 

For both types of noise, when window lengths were 
reduced below 0.3 s, the correlations of the ER and NC 
metrics to the Theoretical STI were less robust.  In fact, for 
windows in which the theoretical STI is zero (e.g. silent 
intervals), both the ER and NC metrics often generated 
values greater than zero – as high as 0.4 for the ER method 
and 0.8 for the NC method. Reasons for this behavior are 
being investigated. 

3.2 Comparison of Metrics to Subject 
Intelligibility Scores 

A second corpus of nonsense sentences, spoken either 
conversationally (conv) or clearly at normal rates 
(clear/norm) by a female (RG) and a male (SA) talker in the 
presence of -1.4 dB speech-shaped noise was also analyzed 
[15]. The purpose of this analysis was three-fold. First, we 
wished to verify metric performance on more than one 
voice. Second, since subject intelligibility data was 
available for these speech materials and condition, we were 
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interested in seeing how well the metrics would compare to 
subject performance at the sentence and word levels. Third, 
we were interested in how the short-time metrics would 
perform on different speaking styles for which we have 
previously demonstrated significant intelligibility 
differences [6, 15]. 
 

To demonstrate the first goal, Fig. 3 plots regression 
analyses of STI for keywords from talkers RG (top row) 
and SA (bottom row) for the two metrics (ER on the left 
and NC on the right). 
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Fig.3 Speech-based Metrics vs. Theoretical STI 

Regression analyses for speech based STIs vs. theoretical 
STI, using windows equal to keyword lengths. Top row: 
talker RG, bottom row: talker SA. Circles represent conv 
keyword STIs and triangles represent conv/clear keyword 
STIs. Solid crosshairs: mean STIs for conv words; dotted 

crosshairs: mean STIs for clear/norm words. 
 

These figures include data on both speaking styles. The 
circles correspond to conv speech and the triangles 
correspond to clear/norm speech and the cross-hairs denote 
the means with the solid lines corresponding to the conv 
means and the dotted lines indicating the clear/norm means. 
Note that, despite the substantial overlap of STIs for the 
two speaking styles, both talkers’ means for clear/norm 
words are greater for both the theoretical and speech based 
STIs. The R2 statistic is 0.97 for the ER method and 0.93 
for the NC method for both talkers (fit was made over 
words from both speaking styles). As was seen for the 
previous speech materials, the NC method results are 
shifted upward relative to the ER method results and the 
theoretical STI. 
 

Next the speech-based STI methods were compared with 
intelligibility scores for sentences averaged across subjects. 
In Fig. 4, speech-based STIs are plotted on the horizontal 
axes and average percent correct values are plotted on the 
vertical axes.  
 

The R2 statistics for the data in Fig. 4, 0.34 (ER method) 
and 0.28 (NC method) for talker RG and 0.45 (ER method) 
and 0.42 (NC method) for talker SA, are much lower than 
for the regressions of the metrics against the theoretical STI 
for word-length windows. The reasons are twofold. First, 
the goodness of fit statistic is not as meaningful if the data 
is spread vertically around the mean, as is somewhat true of 
the sentence data since all sentences were presented at -1.4 
dB SNR. Second, there are many more data points in the 
word regression than there are in the sentence regression 
analysis (4 to 6 words per sentence). 

 

It should be pointed out that, for both the word-level metric 
vs. theoretical STI and sentence-level metric vs. 
intelligibility, the averages for clear/norm are always 
greater than the averages for conv speech. This means that 
the metrics are able to capture some aspects of the 
clear/norm speech that contribute to its higher 
intelligibility. 
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Fig. 4 Speech-based Metrics vs. Percent Correct 
Regression analyses for speech-based STI vs. percent 

correct using windows equal to sentence lengths. Top row: 
talker RG; bottom row: talker SA. Left column: ER 

method; right column NC method. Triangles correspond to 
clear/norm sentences and circles correspond to conv 

sentences. 
 

In an effort to compare speaking style results more directly, 
we analyzed the difference in intelligibility between 
clear/norm and conv sentence pairs vs. difference in the 
metrics. Figure 5 shows the results for the two methods. 

 

Fig. 5 Change in STI vs Change in Percent Correct Due to 
Change in Speaking Style. 

Stars represent sentences spoken by RG. Circles represent 
sentences spoken by SA. Solid horizontal and vertical lines 
mark zero change in percent correct and STI respectively. 

 
The vertical lines in each plot correspond to no change in 
STI and the horizontal lines correspond to no change in 
percent correct. Each symbol corresponds to a sentence 
with the stars corresponding to talker RG and the circles 
corresponding to talker SA. Symbols in the first and third 
quadrant correspond to sentence results accurately 
predicted by the metrics, i.e. clear/norm sentences which 
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are more intelligible than their conv counterparts and have 
higher STI values or clear/norm sentences that are less 
intelligible and have lower STI values. Most sentence pairs 
and the means for both talkers fall in the first quadrant. A 
few sentence pairs fall in the third quadrant. The fourth 
quadrant, with the second largest cluster of sentence pairs - 
mostly spoken by RG - corresponds to clear/norm sentences 
which are less intelligible than their conv counterparts but 
have STI values that are higher. These are the sentences for 
which the STI metrics changed in the opposite direction 
from the subject data. These sentences have been analyzed 
further and it has been determined that the metric values are 
driven by voiced sounds in the words such as vowels and, 
despite strong vowels, some key words have low 
probability of correct identification. 
 

The next step was to consider how SNR changed from the 
beginning to the end of the sentences. The hypothesis was 
that some of the clear/norm advantage was due to a 
maintenance of SNR for later words in the sentences when 
compared to a reduction of SNR for those words in the 
conv sentences. As shown in Fig. 6, this hypothesis is 
supported by the data. 
 

-100

0

100

RG

C
ha

ng
e 

in
 %

 C
or

re
ct

ER

0 .2 .4-100

0   

 

SA

Change in STI

RG

NC

0 .2 .4
SA

 
Fig. 6 Change in Percent Correct vs. Change in STI for 
First and Last Words Due to Change in Speaking Style 

Stars correspond to first word pairs. Triangles correspond to 
last word pairs. Solid horizontal and vertical lines mark 

zero change in percent correct and STI respectively. 
 

The stars represent the first word changes and the triangles 
represent the last word changes in STI and percent correct 
when the talkers change speaking style. The last words 
have the greatest increase in both STI and percent correct 
going from conv to clear/norm. This is true for both talkers 
although the result is more noticeable for talker SA. The 
main reason for the increase is that most talkers let their 
voice level fall off as they speak conversationally but 
maintain a more stable level when they speak clearly, even 
when speaking clearly at normal speaking rates. 

4 Conclusions 

The work reported herein has demonstrated two important 
results. First it has been demonstrated that the short-time 
STI methods considered can generate accurate STI values 
down to time scales on the order of 1/3 s in both stationary 
and fluctuating noise backgrounds. Second, these methods 
successfully predict intelligibility differences due to 

speaking style at both the sentence and word level, 
specifically tracking differences in acoustic features such as 
SNR word by word through a sentence. Clearly work needs 
to be done to more thoroughly investigate the limitations of 
these new methods but they represent promising new ways 
to objectively predict speech intelligibility in a variety of 
acoustic environments. 

Acknowledgments 

The authors wish to thank Dr. Jeanie Krause for providing 
the stimuli and subject response data presented in Sect. 3.2. 
We also thank Mr. Kenneth Schutte and Dr. Louis Braida 
for their comments and suggestions.  This work was 
supported by NIDCD grant -RO1-DC007152-01A2. 

References  

[1] T. Houtgast, H. J. M. Steeneken, "A multi-language 
evaluation of the RASTI-method for estimating speech 
intelligibility in auditoria," Acustica, 54, 185-199 
(1984). 

[2] T. Houtgast, H. J. M. Steeneken, "Evaluation of speech 
transmission channels by using artificial signals," 
Acustica, 25, 355-367 (1971). 

[3] H. J. M. Steeneken, T. Houtgast, "A physical method 
for measuring speech-transmission quality," J. Acoust. 
Soc. Am., 67, 318-326 (1980). 

[4] IEC, "Sound system equipment - Part 16: Objective 
rating of speech intelligibility by speech transmission 
index," Internat. Electrotech. Commiss. (1998). 

[5] C. Ludvigsen, "Prediction of speech intelligibility for 
normal-hearing and cochlearly hearing-impaired 
listeners," J. Acoust. Soc. Am., 82, 1162-1171 (1987). 

[6] K. L. Payton, R. M. Uchanski, L. D. Braida, 
"Intelligibility of conversational and clear speech in 
noise and reverberation for listeners with normal and 
impaired hearing," J. Acoust. Soc. Am., 95, 1581-1592 
(1994). 

[7] K. L. Payton, L. D. Braida, "A method to determine the 
speech transmission index from speech waveforms," J. 
Acoust. Soc. Am., 106, 3637-3648 (1999). 

[8] K. L. Payton, L. D. Braida, S. Chen, P. Rosengard, R. 
L. Goldsworthy, "Computing the STI using speech as a 
probe stimulus," in Past, Present and Future of the 
Speech Transmission Index, TNO, 97-110 (2002). 

[9] R. Drullman, J. M. Festen, R. Plomp, "Effect of 
temporal envelope smearing on speech reception," J. 
Acoust. Soc. Am., 95, 1053-1064 (1994). 

[10] R. Drullman, J. M. Festen, R. Plomp, "Effect of 
reducing slow temporal modulations on speech 
reception," J. Acoust. Soc. Am., 95, 2670-2680 (1994). 

[11] R. Drullman, "Temporal envelope and fine structure 
cues for speech intelligibility," J. Acoust. Soc. Am., 97, 
585-592 (1995). 

[12] R. L. Goldsworthy, J. E. Greenberg, "Analysis of 
speech-based speech transmission index methods with 

Acoustics 08 Paris

1109



 

implications for nonlinear operations," J. Acoust. Soc. 
Am., 116, 3679-3689 (2004). 

[13] T. Houtgast, H. J. M. Steeneken, "A review of the 
MTF concept in room acoustics and its use for 
estimating speech intelligibility in auditoria," J. Acoust. 
Soc. Am., 77, 1069-1077 (1985). 

[14] C. Ludvigsen, C. Elberling, G. Keidser, T. Poulsen, 
"Prediction of intelligibility of non-linearly processed 
speech," Acta Octolaryngol. Suppl., 469, 190-195 
(1990). 

[15] J. C. Krause, "Properties of Naturally Produced Clear 
Speech at Normal Rates and Implications for 
Intelligibility Enhancement," Ph.D., Dept. Elec. Eng. 
Comp. Sci., Mass. Inst. Tech., Cambridge, MA (2001). 

[16] K. L. Payton, M. Shresha, "Evaluation of short-time 
speech-based intelligibility metrics," to be presented at 
Proc. Internat. Commiss. Biol. Effects Noise, 
Foxwoods Resort, CT (2008). 

[17] T. Houtgast, H. J. M. Steeneken, R. Plomp, "Predicting 
speech intelligibility in rooms from the Modulation 
Transfer Function I. General room acoustics," 
Acustica, 46, 60-72 (1980). 

Acoustics 08 Paris

1110


