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Up to now the research and development in the field of building acoustics is based mainly on measurements. The 
consequence is that the development and optimization of a new building component is a very tedious and 
expensive task. A considerably reduction of these costs could be achieved, if the optimization relying on 
measurements would be replaced – at least to some extent – by a computational prediction model. Motivated by 
these aspects a method is presented for using finite element techniques to estimate the impact sound level from 
lightweight floors. The overall approach consists of the three-dimensional modeling of the structure and the 
excitation source (tapping machine), the subsequent modal- and spectral analyses and the computation of the 
radiated sound from the ceiling.    

1 Introduction 

Commonly used prediction models are based on measured 
data for the component parts under consideration. These 
models are very useful for the evidence of performance of 
known building components [1], but they are not suited for 
the development of new components. An alternative 
approach in this context is the application of the finite 
element method (FEM) to the propagation of the sound 
transmission as shown in this contribution. The paper 
shows first an overview of the approach and deals then 
more elaborated with the excitation force of the floor, the 
modeling of the damping mechanism, and the radiation 
effects. It closes with some examples for the application of 
the model to the impact sound propagation of lightweight 
floors. 

2 Survey of computation 

The overview of the computation model, given in Figure 1, 
could be divided in the following steps: 

Excitation of the impact-sound 
In the experimental rating of the impact sound level of a 
floor the tapping machine is most commonly used as the 
excitation source. For the computation model the excitation 
force has to be expressed with respect to the interaction 
between the hammer of the tapping machine and the floor 
surface at the driving point. 

Modeling of the structure 
The thin-walled lightweight floor, consisting of plates and 
beams is discretized with a fully three-dimensional 
approach, where anisotropic high-order solid finite 
elements are applied allowing different polynomial degrees 
for each direction of the element [2].   

Modal analysis 
In the modal analysis the eigenvectors of the problem are 
computed and used to decouple the system of differential 
equations. In the second step the differential equations are 
Fourier-transformed and solved in the frequency domain. 
Due to the fact that the impact sound level of lightweight 
floors is dominated by transmissions at very low 
frequencies, the computation can be restricted to a small 
number of eigenvalues. 

Impact sound spectrum 
The response of the structure to the excitation force 
spectrum with respect to the modal damping of the structure  
 

 
 
is computed in the frequency domain by summing up the 
result of each transformed differential equation. This 
computation is done for each excitation-position of the 
tapping machine and each considered radiation-point of the 
structure.  

Radiation of the impact sound  
For the assessment of the impact sound insulation of floors 
the normalized impact sound pressure level Ln is calculated 
from the sound pressure level in the receiving room. In the 
prediction model, this quantity is computed from the 
radiated impact sound spectrum in different ways. 
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Fig. 1: Workflow of computation 
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3 Excitation of the impact-sound 

The standard tapping machine according to ISO 140-06, 
consists of five steel cylinders (hammers) with the mass of 
M0 = 0.5 kg per hammer. Each hammer hits the floor after a 
free fall of h = 0.04 m two times per second. Fig. 1 (top) 
shows the tapping machine and its excitation force in the 
time and frequency domain. Expressions for the force 
spectrum due to the impact of the hammer can be derived 
by the Fourier transformation of the force pulse in the time 
domain. The problem to solve in this context is the 
interaction of the hammer with the floor structure during 
the contact time, which shows a strong material 
dependency. Several approaches were made to solve this 
problem [3,4,5,6,7] starting by Cremer 1948 who expressed 
the force spectrum of the impact by the momentum of the 
hammer.  
Based on the literature solutions the model presented here 
describes the impact of the hammer on the floor by a two 
degree of freedom system as shown in Fig. 2. 
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Fig. 2: Description of the excitation by the local and 
global parts of the admittance Y at the driving point 

The upper part of the system, shown in Fig. 2 as the local 
admittance YL, represents the effects at the driving point of 
the hammer impact. The hammer shows a free, damped 
oscillation for half of a period (as the time of contact) with 
the velocity v0 as initial condition. The lower part, 
representing the floor, shows a forced damped oscillation 
with the velocity vi. It could be expressed as the global 
admittance YG,i for each eigenmode of the floor.  
Considering the frequency the equilibrium of forces and 
continuity of velocities in Fig. 2 yields: 
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This could be rewritten for the time of contact (v0 = vc) as: 
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The time-dependency of the system refers to the local 
admittance and therefore to Fn,L as the local part of the 
excitation spectrum. With the assumption that the influence 
of the global admittance to the contact time is small we can 
compute Fn,L as given by Vér in [5] with additional respect 
to the local damping Dc:  
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The global part of the excitation force spectrum Fn,G 
represents the reaction of the floor to the impact. It can be 
computed for each eigenmode ϕ i by: 
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Thus Eq.(2) gives for the first impact of the hammer  
(Fn,R = 0): 
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Due to the fact that the measurement of the impact sound 
level is carried out in a steady state vibration of the floor, 
we have to respect a relative velocity between the dropping 
hammer and the vibrating floor, which is represented in 
Eq.(2) by the force Fn,R.  
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The vibration velocity vR results from the previous hammer 
–impacts. It is reduced due to the structural damping during 
the free oscillations between two impacts.  

 
Comparison with measurements 

There are two limiting conditions for the described system. 
The first case considers very stiff floors (YG → 0) where 
just the upper part of the system in Fig. 2 is relevant. A 
comparison of measured and computed data for this case is 
shown in Fig. 3. For the measurement the force transducer 
was placed between a chip board and a stiff base and driven 
by a single hammer of the tapping machine.  
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Fig. 3: Excitation force of the tapping machine (single 
hammer, f = 2 Hz) considering local effects at chipboards 

with a thickness of 19-25 mm on a stiff base. 

The second case considers floors with very hard surfaces 
(YL → 0) where just the lower part of the system in Fig. 2 is 
relevant. For this case the force transducer was placed on 
the floor and directly driven by the hammer of the tapping 
machine (metal – metal). The computation was carried out 
for the first eigenmode of the floor planking. The results of 
computation fit very well to the measurements. 
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Fig. 4: Excitation force of the tapping machine (single 
hammer, f = 2 Hz) considering global effects of a light-
weight floor for the first eigenmode of the planking at  

f0 = 80 Hz (measured 63 – 100 Hz).   

4 Structural damping 

The model of the damping behaviour is required in the 
spectral analysis to compute the amplitudes of the floor 
vibration. In building acoustics it is common to use the loss 
factor η for describing the damping of a structure. It is 
defined as the ratio of the energy loss EV per period (2π) 
and the stored (reversible) energy ER in a dynamic system. 

 
(7) 

The structural damping of a lightweight floor consists of 
several parts as illustrated in Fig. 5.   
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Fig. 5: Different parts of the loss factor 

 
Internal losses ηinternal 

The internal losses are describing the material damping 
which can be measured experimentally for different 
materials. In case of a structure with different materials – as 
the lightweight floor in Fig. 5 - the internal loss factor for 
the whole structure is required. It can be computed as the 
ratio of the total strain energy of the different materials Epot,l 
multiplied by the internal loss factors ηinternal,l and the strain 
energy in the whole structure Epot,ges multiplied by the 
unknown internal loss factor ηinternal,ges (see [8,9]).  

 
(8) 

Boundary losses ηboundary 
The boundary losses are related to the energy flow via the 
supports of the floor. In case of a well known test facility 
empirical data can be used. Otherwise they can be 
computed by Eq.(7). The energy losses EV are given by the 
strain energy in the support and the flanking wall 
respectively. The stored Energy ER is given by the strain 
energy in the floor. 

Frictional losses ηfriction 
The consideration of the energy dissipation in frictional 
joints was carried out in a simplified model based on the 
frictional force FN µ and the relative movement between the 
planking and the beams, see Fig. 5. 

 
(9) 

 

Radiation losses ηradiation 

The loss factor which considers the energy losses due to the 
radiated sound is given in [11] as a function of the radiation 
loss factor σ and the area related mass m’ of the radiating 
surface. 

 

 
(10) 

 
Fluid damping ηfluid 

An empirical approximation for the fluid damping by the 
air, depending on the mass m' of the radiating surface, is 
given by Müller [10] with: 

 

 
(11) 

 
Comparison with measurements 

The loss factors of a lightweight floor from a computation 
are shown in Fig. 6. A comparison between the measured 
and the computed total loss factors are shown in Fig. 7. 
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5 Radiation of impact sound 

In the last step of the approach the radiation of the impact 
level is considered. The methods proposed in the literature 
which are dealing with the radiation can be divided in two 
groups. First the fully coupled methods, where beside the 
radiation of the structural vibration into the room also the 
influence of the resulting sound pressure (in the room) to 
the structure is considered. Second the weakly coupled 
methods which neglect this influence.  

For the application presented here two methods of the weak 
coupled group are used. Therefore the structural vibration 
of the floor was computed in the first step. Then the known 
vibrating velocity v of the floor surface is used to compute 
the sound pressure in the room (with fluid F) as shown in 
Fig. 8. 

F

v

 
Fig. 8: Radiating sound of the vibrating structure  

into the room 

 

Modal method 

The first method is based on the Helmholtz equation and 
makes use of the room’s modal solution. The unknown 
sound pressure p in any point (x,y,z) of the room can be 
computed by the known velocity vn of the radiating surface 
and the Green elementary solution Gn of the room [12]. 

∫=
S nnFnn dSvGjzyxp ρω),,(   (12)

The Green elementary solution is given by the admittance Y 
and the eigenmodes Φ of the room at the surface of the 
structure and at the point (x,y,z). 
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The eigenmodes Φ of the room are given by the dimensions 
of the room. 
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Fig. 9: Rectangular room with the dimensions Lx, Ly, Lz 
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Integral method 

The second model discretizes the vibrating area of the floor 
- as shown in Fig. 10 – in sound radiating monopoles [13]. 
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Fig. 10: Illustration of the integral solution  
The radiated sound power P is computed from the direct 
radiated sound power of each monopole Pi and the 
interaction between the monopoles Pi,l. 

∑∑∑
= ==

+=
N

i

N

l
li

N

i
i PPP

1 1
,

1

  (15)

Pi is given by the impedance ρF cF and the wavenumber k of 
the fluid (air), the discretized surface element ∆S and the 
vibration velocity v. Pi,l is additionally given by the distance 
di,l and the phase α between the monopoles. 
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6 Examples 

As a first validation of the method some comparisons 
between the measured and the computed impact sound level 
of lightweight floors are shown. The first example in Fig. 
11 indicates a simple lightweight floor consisting of timber 
beams and chipboard planking. The diagram displays the 
measured data of similar floors in different test facilities 
and the computed data with the integral and the modal 
radiation method. Fig. 12 shows this comparison for a 
laminated timber floor with a floating floor screed on 
mineral wool and crushed stones as loading of the floor. 
The agreement of data from computation is good and lies 
within the well known scatter in acoustic measurement 
results of these test elements. 
 

a)

b)

c)

d)

Fig. 11: Comparison measurement – computation for a 
simple lightweight floor. a) computation using an 

integral method for the radiation b) computation using a 
modal method for the radiation c) measured data of 

similar floors in different test facilities d) mean value of 
measured data ± 2σ 

a)
b)

c)

d)

Fig. 12: Comparison measurement – computation for a 
laminated timber floor with a floating floor screed on 

mineral wool and crushed stones as loading.  
a) computation using an integral method for the 

radiation b) computation using a modal method for the 
radiation c) measured data of similar floors in different 

test facilities d) mean value of measured data ± 2σ 

7 Conclusion 

A method is presented to estimate the impact sound level 
from lightweight floors by using finite element techniques. 
The approach consisting of the three-dimensional modeling 
of the structure, the modeling of the excitation source 
(tapping machine), the subsequent modal and spectral 
analyses and the computation of the radiated sound. It 
shows a good accordance between measured and computed 
data of the impact sound level.  
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