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A method for the determination of the bulk moduli and loss factors of micro-voided composite materials is 
presented.  The method requires that the reflection and transmission coefficients of a tile of uniform thickness 
are determined in both amplitude and phase as functions of frequency.  Reduction to the bulk modulus and loss 
factor then proceeds by using the analytic properties of a function of a complex variable derived from the 
reflection and transmission coefficients.  A pulse tube is used for the determination of the complex reflection and 
transmission coefficients.  Although other measurement techniques are available, the pulse tube has proved to be 
versatile in covering a large range of the frequency-temperature master curve for typical composite materials 
used in underwater acoustics.  It achieves this versatility by using an anti-freeze/water mixture as the medium 
following which measurements can be made over a range of different temperatures.  

1 Introduction 

Composite visco-elastic materials consisting of micro-
inclusions embedded in a visco-elastic substrate have found 
considerable application in underwater acoustics by virtue 
of the damping properties of their compression waves.  
These damping properties arise through boundary 
interaction between substrate and inclusions conveying the 
damping inherent in the substrate shear modulus onto 
compression.  While many theoretical models exist for the 
prediction of composite properties (e.g. [1, 2] where 
reference is made to other models), unresolved issues 
remain before having full confidence in them.  Therefore 
the capability of measurement of the macroscopic 
properties of these materials remains an important part of 
noise reduction programmes. 
We present here a method of measurement enabling the 
deduction of bulk modulus over a critical part of the 
frequency-temperature master curve [3].  Practical aspects 
of the method are presented in §2, but in outline it is based 
on determining complex reflection and transmission 
coefficients of samples placed in a pulse tube. 
Complementary to the measurements, a method of 
reduction of these data is given in §3 using analyticity 
properties of certain complex functions in an interesting 
and illuminative way. 
The reduction method is unlikely to be new, but appears not 
to have received wide dissemination, probably for the 
reason that panel transmission characteristics are of primary 
interest, not the elastic properties that give rise to them [4, 
5].  However, in our case knowledge of the elastic 
properties of these materials is central to the operation of 
validated computer models, e.g. FLAAPM [6], for the 
properties of multi-layered baffles.  This makes the 
reduction method worthy of further exposition for the 
determination of these difficult to obtain properties. 
Results of analysis of real data are presented in §4 and 
limitations and potential problems are explored further in 
§5.  In particular, measurement data at different 
temperatures at constant static pressures greater than 
ambient do not give contiguous sections of the master 
curve. 

2 Data collection and processing 

The requirement for the pulse tube is to provide reflection 
and transmission coefficients of a sample of a circular disc 
of a test material with parallel faces, these coefficients to be 
taken as representative of an infinite plane sheet of 

material.  The tube is a water-filled thick walled cylinder 
with a ball projector hydrophone fitted into the bottom end 
cap, the top end cap providing access to the water column.  
An insert of high transmission loss material is fitted below 
this top end plate to reduce radiation from the end cap due 
to compression waves in the tube wall. 
The water column and sample can be subjected to 
hydrostatic pressures up to 40 bars and the temperature 
controlled between 0 and 35°C.  Hydrophone inserts in the 
tube allow hydrophones to be inserted into the water 
column above and below the sample disc and are therefore 
available to measure pressure on the reflected or 
transmitted side of the sample.  The instrumental set-up is 
arranged to excite the tube with a burst chirp. 
The useful frequency range is ~400Hz to 12kHz, the lower 
limit determined by the performance of the projector and 
the higher by the frequency of the first cut-on mode in the 
water column.  However, for test samples having sound 
speeds lower than water, the high frequency limit may be 
significantly reduced as will be demonstrated.   
Frequency response functions between projector source 
signal and hydrophone outputs are measured using an HP 
analyser and are then transformed into the impulse response 
domain.  Here, unwanted reflections are gated out and then 
re-transformed to the frequency domain.  Reflection and 
transmission coefficients with phase follow 
straightforwardly.  It is noted that the gating process 
reduces frequency resolution of the computed coefficients 
to ~250Hz, but this is not critical provided the frequency 
dependence of the effective material properties is relatively 
smooth. 

3 Theory 

The key to deducing bulk modulus of a layer of material 
from its reflection and transmission coefficients lies in 
determination of the complex propagation parameter, p, 
across its thickness, L, defined by 

ikLcLi eep == /ω   (1) 

encapsulating phase shift and attenuation arising from the 
complex wavenumber ck /ω=  of a plane compression 
wave over a distance L.  ω is angular frequency and c the 
unknown sound speed in the sample material.  Standard 
analyses for propagation through layered media (see [7] for 
example) yield the following for the propagation parameter:  

12 −±= zzp  where TTRz 2/)1( 22 +−=   (2) 

Here, R  and T, are the complex reflection and transmission 
coefficients.  Note that (2) gives two possible values for 
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complex p and a rationale is required for selecting the 
physically correct one.  The obvious rationale of selecting 
the root for which |p|<1 would be satisfactory given perfect 
error-free  R  and T, but it can fail if  R  and  T are subject 
to experimental error.  In light of this an alternative 
rationale has been sought and found.  It is based a principle 
that the locus of the propagation parameter in the complex 
plane as frequency changes should be continuous and lie on 
the correct sheet of the Riemann surface.  It can be shown 
that, for error-free R and T, the following factorisation of 
(2) automatically satisfies this 

p z z z z( ) .= − + −1 1  (3) 

given the convention that the branch cut for complex square 
root is the negative real axis.  Equation (3) then has a single 
branch cut on the real axis joining the two branch points at 
±1.  The wavenumber within the sample, hence 
compression wave speed follows from equation (1): 

in)/iL2πln(p)(k +=   (5) 
The integer n is the number of whole wavelengths λ across 
the thickness L plus λ/2 and reflects the fact that the 
complex log function is multi-valued.  Again, as p is a 
continuous function of z, k is also continuous function of p 
and is accommodated if n is incremented by 1 for each 
anticlockwise crossing of the negative real axis of the 
complex p-plane and reduced by 1 for each clockwise 
crossing. 
To illustrate this rationale, the theoretical reflection and 
transmission coefficients for a layer of known properties 
are known (see [7]).  Thus, Figs.1 shows the loci with 
respect to increasing frequency for the parameters z and p 
for these idealised  R  and  T of a layer for which a bulk 
modulus (with damping) and density have been assigned. 
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Fig.1 Idealised locus of the z parameter. 
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Fig. 2 Idealised locus of the p parameter. 

Starting at the +1 branch point for zero frequency, the z-
locus winds its way around the branch cut in a clockwise 
direction with increasing frequency and does not cross the 
cut, as it should not in this theoretical demonstration.  
Correspondingly, p, spirals inwards in an anticlockwise 
sense starting from the positive real axis, the inward spiral 
is indicative of evanescence of the damped wave across the 
sample: without damping the locus would remain on the 
unit circle.  The compression wavenumber follows from 
equation (5) with n being incremented in the manner 
already described. 

4 Analysis of real data 

As the first example of real pulse tube data we simply take 
the water column between the ‘reflection’ and 
‘transmission’ hydrophones as a fundamental layer sample 
with no actual sample in place.  In this case reflection 
coefficient is zero and the transmission coefficient is as 
deduced from the transfer function between the two 
hydrophones.  Thus Fig.3 shows the z-locus for 1.4m of 
water column between the hydrophones. 
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Fig. 3 Locus of z-parameter for the water column between 

hydrophones 
Clearly, the locus has several crossings of the branch cut 
between ±1, but the excursion into the wrong sheet of the 
Riemann surface is not great, being at most .03 and easily 
accommodated by taking the opposite sign (i.e. ‘+’) against 
the square roots of equation (3) for the duration of such 
excursions. 
The resulting unwrapped wavenumber-frequency diagram 
is as in Fig. 4.  Note that the small excursions onto the 
wrong Riemann sheet has resulted an insignificant negative 
imaginary component to wavenumber (magnified x100 in 
the figure) as indeed is the positive imaginary component.  
From the figure we can deduce the fluid wave speed as 
1550 m/s. 
Before examining the reduced real data from the pulse tube 
with a sample present, one further element is added to the 
reduction process.  This follows a pertinent discussion with 
Prof. V. Humphreys who noted that R and T are not 
independent and we need not retain the measured values of 
both R and T.  Now the one difficult measurement to obtain 
with accuracy is sample position.  This did not matter for T 
as phase adjustment for transmission requires only the 
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water column length between hydrophones, independent of 
sample position. 
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Fig.4. Unwrapped wavenumber-frequency diagram. 

In contrast phase adjustment for R is not sample position 
independent and therefore carries the inherent inaccuracy of 
sample position.  However, Prof. Humphrey’s observation 
means that we can relinquish the inaccurately measured 
reflection coefficient, after its initial and use 
 

t
p

pR
α

α
4

)1)(1( 22 −−=   (9) 

iteratively updating  R  and p in turn.  In (9), α=(ρ2c2)/( ρc) 
is the ratio of sample and fluid densities and sound speeds.  
The iteration procedure is rapidly convergent. 
The sample considered here is taken from one of many 
composite materials used in underwater acoustics as 
described in [5] for example.  Measurements were made at 
3 temperatures namely 0°C, 4°C and 10°C and at 4 static 
pressures of .08Pref, .58Pref, .8Pref and Pref. 
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Fig.5 z-parameter locus for the composite sample. 

Fig. 5 shows the z-locus for the 10°C case and Fig. 6 the 
corresponding p-locus over a frequency range 1.25 to 10 
KHz.  It is evident that, while the loci behave as expected 
over the greater part of their lengths, a kink occurs in each 
at the same frequency of 7.925 KHz.  This behaviour is 
indicative of a higher order wave-guide cut-on in the 
sample.  At higher frequencies, the data will be 
contaminated by the presence of this mode and we have no 
current prescription to handle it.  Indeed the data will suffer 

contamination before that frequency as even the approach 
to cut-on will be characterised by reduction in evanescence 
across the sample thickness of the pre-nascent mode.  Thus 
we discount data for the determination of bulk modulus and 
loss factor for frequencies over 6.25 KHz. 
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Fig. 6 p-locus of the composite sample. 

Fig. 7 shows bulk modulus and Fig. 8 the loss factor of the 
sample as deduced from measurements made at the 4 
pressures of .08Pref, .58Pref, .8Pref and Pref and three 
temperatures 0°C, 4°C and 10°C. 
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Fig. 7 Bulk modulus for 4 static pressures and 3 

temperatures. 
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Fig. 8 Loss factor for 4 static pressures and three 

temperatures. 
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There are three things to note.  Firstly the abscissa 
represents log(frequency) transformed to a master 
temperature of ts (=0°C in this case) according to the WLF 
transform [3] given by 

{ } ( )
( )Δ log( )

.
.

frequency
t t
t t

s

s

=
− −

+ −

886
1016

 (11) 

with the right-hand column of plots in both figures being 
from the 0°C data, the centre from the 4°C data and the left-
hand from the 10°C data.  Secondly, bulk moduli are 
monotone increasing with pressure and loss factors 
monotone decreasing.  This is entirely to be expected, as 
the compressible inclusions will progressively collapse with 
increasing pressure making them less effective in: (a) 
reducing the effective bulk modulus; (b) making the 
intrinsic lossiness of shear modulus transfer onto 
compression waves. 
Thirdly, it is apparent that, except at the lowest pressure 
(.08Pref), the three different temperature segments of bulk 
moduli do not fall satisfactorily on to a master curve.  
Indeed, with increasing pressure the three segments seem to 
drift their own particular way!  Perhaps surprisingly the 
results for loss factors do seem to fall on a master curve for 
all pressures.  This is not understood at present, but these 
issues are discussed more fully in the next section. 

5 Limitations and issues arising 

No measurement technique or reduction method will be 
error/problem-free and the method here is no exception, the 
first limitation being that of a limited frequency range for 
valid data.  The low frequency limit is <~1KHz and the 
upper limit dictated by the frequency of the first cut-on 
wave-guide mode in the material sample.  Thus this upper 
limit is dependant on the wave speed of sample being 
studied.  To overcome these limitations and extend the part 
of the master curve that can be reached by the 
measurements, data was obtained at different operating 
temperatures.  This process worked well for close to zero 
static pressure, but suffered from the defect that the results 
obtained at different temperatures were no longer 
contiguous with respect to each other when reduced to the 
master temperature.  The reason for this (affirmed by Paul 
Howgate, IMT Sweden; private communication) is that the 
WLF transform works for constant static strain, not 
constant stress, but the results presented here were for 
constant static stress for which the sample being measured 
would adopt different static strains at different 
temperatures.  Resolution of this would require carrying out 
measurements at different pressures for different 
temperatures that would give the same strain state.  The 
present authors do not know the full resolution of this 
problem since a further issue arises: at colder temperatures 
the test samples may take a long time to equilibrate and in 
Paul Howgate’s words: ‘If you have a couple of millennia 
to spend this is O.K.! However, we mere mortals prefer to 
get the testing over with in a reasonable time scale!’ 
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