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The optimal design of structures in terms of noise control is of great interest in many fields such as automotive, 
aerospace and naval. Since design strategies require simple design parameters, the sound power is often used to 
characterize the sound radiated from a structure. 
The CTSN in collaboration with TOP MODAL has recently developed a software tool to efficiently compute the 
radiated sound power of a vibrating structure using modes obtained by finite element analysis. The modal 
analysis has been enhanced to take into account the presence of fluid cavities and damping elements via the 
introduction of residual modes. 
The radiated sound power is computed from the volume velocities of the vibrating surface using a lumped 
parameter method requiring no explicit modeling of the acoustic medium. The modal contributions to the total 
sound power may also be calculated. 
The underlying methods are described including the improved coupled fluid-structure modal analysis and the 
computation of the radiated sound power. Next an overview of the tool's architecture is presented. Finally, an 
industrial application is presented to illustrate the features and interest of the tool. 

1 Introduction 

Often when studying the sound radiated from vibrating 
structures, a simple quantity characterizing the overall 
acoustic noise level is more useful than an abundance of 
data resulting from a detailed analysis. This is especially 
true in the design phase where efficient methods based on 
simple performance criteria are needed. 

It is within this context that an innovative set of methods 
has been implemented within a software tool to compute 
the radiated sound power from the harmonic (steady-state) 
responses of vibrating structures. 

The structure is modeled using finite elements with the 
radiating surface defined as a subset of the mesh - typically 
represented by plate elements and their associated nodes. 

The finite element model can include acoustic cavities 
either totally enclosed by the structure or with openings to 
the external acoustic medium which can be included in the 
radiating surface. 

Frequency responses calculations of a structure coupled 
with acoustic cavities are in general computationally 
intensive due to the unsymmetrical form of the coupled 
equations of motion which are often solved directly at each 
frequency step. To reduce the computational effort, the 
system can be reduced in size via a modal transformation 
using the uncoupled normal modes of the structure and 
acoustic cavities. Unfortunately the resulting condensed 
system may suffer in accuracy due to modal truncation 
errors - especially when dealing with heavy fluids such as 
water or highly pressurized gases. To overcome this 
problem, residual modes [1] have been appended to the 
normal modes of both the structure and fluid cavities to 
compensate for truncation effects. 

Using the coupled equations of the condensed model, the 
frequency responses at the nodes of the radiating surface 
may be efficiently computed either directly or by mode 
superposition using the normal modes of condensed system. 
The mode superposition approach provides useful 
information about the contribution of each mode to the total 
response but may not be suitable for structures with strong 
localized damping in which case the responses should be 
computed directly. 

A lumped parameter approach developed by Koopmann 
and Fahnline [2] is used to compute the far-field sound 
power produced by the vibrating surface of the structure. 
No explicit modeling of the surrounding acoustic medium 
is required. Instead, a special form of the Kirchhoff-

Helmholtz equation is solved whose boundary conditions, 
expressed in terms of the volume velocities of the surface 
elements, are satisfied in an average or lumped parameter 
sense. This provides a good estimation of the far field 
pressure and corresponding radiated power where the 
averaging effects are negligible. 

The first part of this paper presents the modal approach 
used to compute the frequency responses from the finite 
element model of a structure coupled with acoustic cavities. 
Next the lumped parameter method used to calculate the 
radiated sound power from the frequency responses is 
described. Finally, the software tool and an industrial 
application are presented.

2 Notations 

Scalars or matrices 

A, a coupling matrix, surface element length 
C, c damping, speed of sound 
F force 

i 1−
K stiffness 

k mode, acoustic wave number (k = ω / c) 
L characteristic length of structure 
M, m mass 
n unit vector 
p pressure 
Q acoustic cavity source 
S, s surface, acoustic source 

u, û  displacement, volume velocity 

v, v̂  velocity, normal velocity 

x position coordinates 
η  hysteretic (structural) damping 

Π  sound power 
ρ  mass density 

ω  circular frequency fπω 2=
ζ  modal viscous damping factor 

Subscripts 
b uncoupled structure and fluid mode (b=n+m) 
e surface element 
f fluid DOF 
k coupled mode 
s structure DOF 
n structure mode 
m fluid mode 
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3 Structural Responses 

3.1 Coupled Equations of Motion 

The equations of motion governing the harmonic response 
of an structure comprising s degrees of freedom (DOF) 
coupled with one or more fluid cavities comprising f  DOF 
are expressed below. 
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ssM  Structure mass matrix (symmetric) 

ssC  Structure viscous damping matrix (symmetric) 

ssK  Structure stiffness matrix (symmetric) 

ffM  Fluid "mass" matrix (symmetric) 

ffC  Fluid viscous damping matrix (symmetric) 

ffK  Fluid "stiffness" matrix (symmetric) 

fsA  Coupling matrix  ( T
fssf AA = ) 

su  Vector of structural displacements 

fp  Vector of fluid pressures 

sF  Vector of forces applied to the structure 

fQ  Vector of acoustic sources ( ff i QQ ω= ) 

Damping may be introduced in the fluid cavities using 

acoustic absorbers (matrix ffC ), or as via hysteretic 

damping, fη , which may be added to the stiffness matrix 

using fffi K)1( η+ . Similarly, the structure may include 

both viscous and structural (hysteretic) damping. 

Eq. (1) may be solved directly at each frequency, ω, 
however the computation time may be overly prohibitive 
for large models (105 or more DOF). 

As an alternative, the modal reduction technique described 
hereafter has been developed to substantially reduce the 
computational effort. 

3.2 Uncoupled Normal Modes 

The first step of the reduction process consists of 
computing the uncoupled normal modes of the structure 
and acoustic cavities as defined by the eigenvalue problems 
shown below. 

ssnssssn 0KM =+− )( 2ω  (2a)

ffmffffm 0KM =+− )( 2ω  (2b)

This computation is relatively fast since each system is real 
and symmetric and may therefore be solved efficiently 
using for example the Lanczos method. The number of 
modes (n structural modes and m fluid modes) must include 
all modes up to the highest excitation frequency. 

3.3 Residual Modes 

To minimize truncation errors, the structure and fluid 

normal modes sn  and fm  must be enriched by a set of 

residual modes that provide information about the coupling 
effects across the structure-fluid cavity boundaries. 

A residual mode is similar to a normal mode in that it 
satisfies the same orthogonality properties and has an 
associated eigenvalue. However it does not satisfy the 
eigenvalue problem since each residual is in fact a 
particular linear combination of all the truncated (superior) 
normal modes.  

Although residual modes (sometimes known as residual 
vectors or pseudo-modes) have been in use for well over a 
decade, their application to coupled analysis is recent [1] 
and has been implemented in this study. The procedure for 
deriving the residual modes is as follows. 

For the structure, a set of m static modes smX  is computed 

resulting from the forces exerted by the fluid modes across 
the fluid-structure boundary. 

smsfsmss CXK =  (3)

Similarly for the fluid, a set of n static modes fnX  is 

obtained using the pressure exerted by the structure modes 
across the same boundary but in the opposite sense.

fnfsfnff CXK =  (4)

Next, the static modes smX  and fnX  are "filtered" or 

rendered orthogonal with respect to the normal modes sn

and fm , and then orthogonalized to form an orthonormal 

basis of residual modes sm
ˆ  and fn

ˆ  which are then 

appended to the normal modes to form the enriched modal 

bases snB  and fmB . The subscripts n and m are conserved 

for the sake of simplicity. 

]ˆ[ smsnsnB =  (5a)

]ˆ[ fnfmfmB =  (5b)

3.4 Condensed System and Responses 

The physical system of Eq. (1) is condensed by replacing 

the physical responses su  and fu  by the generalized 

responses nu  and mu  via the transformation of Eq. (6) to 

obtain the generalized equations of motion given in Eq. (7). 

nsns uBu =     and    mfmf uBu =  (6)
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with :

snsn FBF = , fmfm pBp = , snssnsnn BMBM = , etc. 
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The condensed system of Eq. (7) may be solved either 
directly or by mode superposition using the k normal modes 

(including right and left eigenvectors bk  and bkY ) 

derived from the conservative condensed system with 
combined structure and fluid partitions (b = n + m).

bkbkbbbbk 0KM =+− )( 2ω  (8a)

kbbbbbkkb 0KMY =+− )( 2ω  (8b)

with 
−=

mmmn

nmnn
bb MA

0M
M      =

mmmn

nmnn
bb K0

AK
K

The generalized masses are obtained from the orthogonality 
relation involving both right and left eigenvectors. 

bkbbkbk MYm =  (9)

Due to the particular form of the system's asymmetry, it can 
be shown that the components of the right and left 
eigenvectors respect the following relation. 

= 2/ kkm
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 (10)

Modal damping factors may be obtained from the diagonal 
terms of the generalized damping matrix according to 

)/(2 kkkk mc ωζ =  (11) 

with )( bkbbkbk diag CYc =    and   =
mmmn

nmnn
bb C0

0C
C

A similar procedure may be used to derive modal damping 
factors from the hysteretic (structural) damping in the 
stiffness matrices. 

Note that use of modal damping assumes that the coupling 
(off-diagonal) terms in the generalized damping matrix are 
small. This assumption may not be valid for systems with 
strong localized damping, in which case Eq. (7) should be 
solved directly. 

However if modal damping is applicable, then the 
responses may be efficiently calculated using mode 
superposition. For example, in the case of a force excitation 
applied to the structure, the displacement response in the 
structure is given by Eq. (12). The other response/excitation 
pairs may be obtained in a similar fashion.  
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Finally the nodal velocities within the structure are given by  

ss i uv ω=  from which the volume velocities of the 

radiating surface may be derived for the computation of the 
radiated sound power. 

If the fluid cavities are in contact with the external acoustic 
medium, it may be desirable to include the opening of the 
fluid cavity as part of the radiating surface. To do so, the 
normal component of the fluid velocity at the cavity 
opening may be computed from the gradient of the pressure 
using Euler's equation. 

nxpnxv ⋅∇=⋅ )(
1

)(
ρωi

 (13) 

These fluid velocities may then be included among the 
structure velocities of the radiating surface. 

4 Radiated Sound Power 

4.1 Introduction 

Consider the radiating surface of the structure depicted in 
Fig. 1 with characteristic length, L, and composed of 
surface elements, e, with characteristic length a related to 
the mesh size of the finite element model. 

Fig. 1 : Radiating Surface and Elements 

The normal velocities at the element's nodes, nv̂ , may be 

decomposed into an average or piston-like component, ev̂ , 

and a zero-average component as depicted in Fig. 2 using a 
one-dimensional element for the sake of simplicity.

Fig. 2 : Element Normal Velocities 

Another important parameter is the acoustic wavenumber, 

k=ω/c, whose inverse, 1/k is the acoustic wavelength. 

If each element of the radiating surface is small compared 
to the acoustic wavelength, (ka<<1), then the far field 
acoustic radiation can be well approximated using the 
piston motion only and its associated volume velocity 

eee S⋅= vu ˆˆ  with eS  the surface area of the element. 

In particular we are interested in estimating the far field 
power output - a simple quantity useful in characterizing 
the overall radiated noise as a function of frequency. 

At very low frequencies (kL<<1), the sound power, Π, can 
be approximated using a simple acoustic source whose 
volume velocity is equal to the overall volume velocity of 
the radiating surface as defined below. 

22
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 (14) 

At very high frequencies (kL>>1), the power output can be 
computed using a plane wave approximation applied to 
each element as follows. 

=Π
e

eeHF S
c 2ˆ

2
v

ρ
 (15) 

These approximations are useful, but often in practice the 
frequency ranges of interest are those where the acoustic 
wavelength is of the same order as the radiating surface 
(kL ≈ 1), in which case a numerical solution is required as 
described hereafter. 

e 

L 

a e 

= + 

a piston zero-average 

e 
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4.2 Sound Power Computation 

A lumped parameter approach based on a volume velocity 
matching scheme developed by Koopmann [2] is used to 
compute the far field sound power. Starting from the 
Kirchhoff-Helmholtz integral equation, the following 
approximate solution for the acoustic pressure field may be 
derived expressed in terms of the free-space Green's 

function ĝ  and constant coefficients να and νβ . 

[ ]{ }
ννννν

ν
ν βα xxnxxgxxgsxp =

=
⋅∇+=

ss
N

),(ˆ),(ˆˆ)(ˆ
1

 (16) 

In Eq. (16) an acoustic source of amplitude, νŝ , is assumed 

to be located at the geometrical center of each surface 
element and of type monopole )0,1( == νν βα , dipole 

)/,0( ki== νν βα  or tripole )/,1( ki== νν βα . A 

monopole is used for baffled elements, a dipole for 
elements enclosing no volume, and a tripole for elements 
enclosing a finite volume. 

Eq. (16) can be rewritten in terms of the velocity using 
Euler's equation, and then integrated over the element 
surface to obtain a system of equations relating the volume 

velocities, û , to the sources, ŝ  at the element centers. 

sUu ˆˆ =  (17) 

The terms of U are computed using the following integral. 

   

  (18) 

Once the source amplitudes are determined from Eq. (17), 
they are used to compute the acoustic power output based 
on analytic expressions for the power output of simple, 
dipole and tripole sources. This computation is expressed in 
matrix form below. Details on the mathematical 
formulation of the matrix S can be found in [2]. 

sSs ˆˆH=  (19) 

4.3 Modal Contributions 

If the surface responses are calculated using mode 
superposition, then modal volume velocities may be 
defined using 

nksneskek i BTu ω=ˆ  (20) 

with nksnB from Eq. (12) and esT representing the 

geometrical transformation from the nodal displacements to 
the average surface element displacement. The modal 
volume velocities can be helpful in describing and 
understanding the behavior of the radiating surface.

The physical volume velocities may then be expressed 
using mode superposition by substituting Eq. (20) into Eq. 
(12) as shown below. 
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Using Eq. (21), it is also possible to compute the power 

output of each mode, k, at the frequency kωω =  in order to 

assess the contribution of each mode to the total power 
output at the resonant peaks.

5 Implementation 

5.1 Software Description 

In order to perform and manage the various calculations 
described above, the software tool VIAC written in 
MATLAB has been developed (see Fig. 3). The tool is 
interfaced with the finite element code MSC/NASTRAN 
and with POWER, a FORTRAN code for the sound power 
computation developed by Koopmann and Fahnline [2].

Fig. 3 : VIAC User Interface 

The frequency responses at the vibrating surface of the 
structure are first computed using NASTRAN. In the 
presence of fluid cavities, a special DMAP (Direct Matrix 
Abstraction Program) script is included to generate the 
residual modes described in §3.3. The responses are then 
calculated from the condensed coupled system of Eq. (7) 
either directly or via mode superposition for lightly or 
uniformly damped structures. 

The responses are then imported to VIAC where they are 
converted to volume velocities and plotted on the mesh of 
the radiating surface. The low and high frequency 
approximations of Eq. (14-15) may also be calculated using 
the volume velocities. 

The sound power is computed using the POWER routine 
which requires as input the geometry of the surface 
elements, the source types (simple, dipole or tripole), and 
the volume velocities as a function of frequency. To reduce 
the computation time, the sound power calculation may be 
distributed over several machines and/or CPUs by dividing 
the volume velocities into separate frequency bands and 
then recombining the power output responses in VIAC. 

If mode superposition is used to compute the surface 
responses, the modal volume velocities and modal 
contributions to the power output may be calculated and 
plotted in VIAC. Several functions are available to verify 
the orientation and other properties of the radiating surface 
as shown below. 

Fig. 4 : Properties of the Radiating Surface 

orientation source type ka values 
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5.2 Industrial Application 

A study was carried out using the VIAC software tool in 
order to study the behavior of a ventilation duct of a marine 
structure. 

The finite element model of the ventilation duct is shown at 
left in Fig. 5. Air enters the circuit at the top right inlet port 
and then splits into the two exhaust ducts before exiting 
into the compartment shown at right with the duct on the 
inner wall. 

Fig. 5 : FE Model of Duct and Compartment  

The air on the inside of both the compartment and ducts is 
modeled using two fluid cavities (not shown) with a 
coincident interface at the two exhaust outlets. A layer of 
acoustic absorber elements is added to the two faces of the 
compartment fluid cavity to minimize unwanted wave 
reflection. 

The radiating surface under consideration is that of the duct 
including the two outlet ports. Since the outlet ports have 
no associated surface elements, normal velocities were 
computed using the pressure field gradient according to Eq. 
(13) in order to include the two outlet ports in the radiating 
surface. 

Following a modal analysis of the coupled system based on 
Eq. (8), the modal strain and kinetic energies were 
computed in order to identify the dominant structure and 
fluid modes according to the energy distribution. In Fig. 6 
we see limited coupling in the energies and therefore the 
fluid modes (shown in boldface) and structure modes are 
easy to identify. 

  

Fig. 6 : Modal Energy Distribution (normalized) 

The system was excited by applying a pressure at the inlet 
port via a massless rigid piston coupled to the fluid cavity.   

The sound power was calculated with and without the 
exhaust ports in order to determine their contribution to the 
output power. The sound power responses plotted in Fig. 7 
show that the majority of the radiated power comes from 
the two exhaust ports and that the radiation from the ducts' 
surface is negligible over the entire frequency range. 

Fig. 7 : Influence of Output Ports on Sound Power 

Sound power responses were also compared between two 
ventilation ducts with different geometries to see if 
significant differences in measured power levels between 
the two systems in a critical frequency range could be 
accounted for analytically. The results are plotted in Fig. 8 
and appear to corroborate the experimental measurements. 

Fig. 8 : Sound Power from Different Duct Geometries 
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critical 
frequency 

range 

--------------------------------------------- 
   Mode |     Kinetic      |      Strain 
    (k) | Mss   Mff   Mtot | Kss   Kff   Ktot 
--------------------------------------------- 
r    1  |  .     .     .   |  .     .     . 
     2  | 0.98  0.11  1.09 | 0.89  0.02  0.91 
     3  | 0.99  0.00  0.99 | 1.00  0.01  1.01 
     4  | 0.93  0.04  0.98 | 0.96  0.07  1.02 
     5  | 0.99  0.00  0.99 | 1.00  0.01  1.01 
     6  | 0.17  0.85  1.02 | 0.15  0.83  0.98 
     7  | 0.91  0.10  1.01 | 0.90  0.09  0.99 
     8  | 0.99  0.00  1.00 | 1.00  0.01  1.00 
     9  | 0.99  0.00  0.99 | 1.00  0.01  1.01 
    10  | 0.99  0.00  0.99 | 1.00  0.01  1.01 
    11  | 0.99  0.00  0.99 | 1.00  0.01  1.01 
    12  | 0.00  1.00  1.00 | 0.00  1.00  1.00 
    13  | 0.09  0.91  1.00 | 0.09  0.91  1.00 
    14  | 0.91  0.09  1.00 | 0.91  0.09  1.00 
    15  | 0.94  0.06  1.00 | 0.94  0.06  1.00 
    16  | 0.06  0.94  1.00 | 0.06  0.94  1.00 
    17  | 0.99  0.00  0.99 | 1.00  0.01  1.01 
    18  | 0.00  1.00  1.00 | 0.00  1.00  1.00 
    19  | 0.99  0.00  0.99 | 1.00  0.01  1.01 
    20  | 0.00  1.00  1.00 | 0.00  1.00  1.00 
--------------------------------------------- 
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