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The evaluation of audio separation algorithms can either be performed objectively by calculation of
numerical measures, or subjectively through listening tests. Although objective evaluation is inherently
more straightforward, subjective listening tests are still essential in determining the perceived quality
of separation. This paper aims to find relationships between objective and subjective results so that
numerical values can be translated into perceptual criteria. A generic audio source separation system
was modelled which provided varying levels of interference, noise and artifacts. This enabled a full
spread of objective measurement values to be obtained. Extensive tests were performed utilising the
output synthesised by this separation model. The relationships found were presented and the factors of
prime importance were determined.

1 Introduction

Blind source separation (BSS) refers to techniques that
extract individual sources from mixtures. When applied
to acoustic sources in a cocktail party scenario, rever-
beration effects are included and the mixing is termed
convolutive. The aim of convolutive BSS algorithms is
to find a set of filters that, when applied to the original
source mixtures, results in estimates of the individual
source signals.
Several numerical performance measures have been de-
vised for BSS. A few of these include distortion and
separation [1], noise reduction ratio and signal-to-signal
ratio [2], and percentage phoneme recognition rate [3].
From [4, 5] signal-to-distortion ratio (SDR), signal-to-
interferences ratio (SIR), signal-to-artifacts ratio (SAR),
and signal-to-noise ratio are also defined.
Although subjective listening tests have been carried out
for BSS, no test has been performed that compares nu-
merical measures to human opinion. Similarly, previ-
ously devised BSS listening tests rate a single attribute
[6] and only analyse differences rather than developing
a framework for the whole BSS problem.
The purpose of this paper is to investigate the rela-
tionship between results from an extensive listening test
and numerical performance measures from a number of
those aforementioned. In particular, performance mea-
sure values for separation quality and intrusiveness are
given which will be most beneficial for the future de-
sign and testing of acoustic BSS algorithms. An ITU
listening test standard was modified to grade multiple
attributes and provide a foundation for future evalua-
tion of BSS algorithms.
Section 3 of this paper details a BSS modelling system
that was used to generate the test excerpts. Section
4 covers the listening test itself including the modifica-
tions made to the ITU listening test standard. Section
contains the results from the tests and comparison to
various performance measures.

2 BSS Modelling System

A series of experiments, not detailed in this paper, were
conducted using a number of BSS algorithms. This gave
rise to a modelling system, which simulates the output
signals of a generic BSS system with varying perfor-
mance. This system enables fast generation of generic
audio excerpts, with a wide spread of parameters, that
are characteristic of a BSS system’s output.
A schematic of this set-up is shown in Fig.1. The ba-
sis for the modelling system is the creation of a source
estimate from its decomposed components. This can

be seen as the reverse of the process carried out by
BSS Eval [1, 2]:

ŝj = starget + einterf + enoise + eartif , (1)

where the components are the part of the target estimate
j that correspond to the original target signal starget, the
other interfering sources einterf , the noise signal enoise,
and the artifact eartif . So rather than decomposing the
target estimate into its components, the components are
synthesised and added together to make the target esti-
mate.

Figure 1: Source separation modelling system overview.

Two sound files are given to the system, the first being
used to create starget and the second to create einterf .
The noise signal enoise was chosen to be Gaussian noise,
which is generated by the system itself. The artifact
signal eartif describes any part of the system that is not
encompassed by the other three components. A generic
artifact common to the majority of BSS algorithms is fil-
tering in the target, noise and interference signals. For
the purposes of this test eartif was simulated by filtering
einterf only.
It is well established that interfering signals are sup-
pressed by BSS algorithms. The residual components
appear as filtered versions in the background of the tar-
get estimate and this filtering is dependent upon the
room impulse response and the demixing filters. Through
the aforementioned experiments, it was found that this
frequency response was random with a slight underly-
ing comb filter structure. For documentation regarding
BSS resultant frequency responses that display a simi-
lar effect see [7, 8]. It has also been analytically shown
that the filtering effects within a room vary with room
type and positions within the room. However, the filter-
ing is random in appearance [9]. For these reasons an
algorithm was created that generates filter coefficients
resembling this type of random filtering and is referred
to hereafter as the artifact filter.
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The source and noise could also be filtered in this way
but it is usually the goal of a BSS system to deconvolve
and hence remove these filtering effects. For this reason,
no filtering was applied to the source signal as in reality
it is not as severe as the filtering applied to the inter-
ference. To simplify the test further, random filtering
of the Gaussian noise was not carried out as its effects
would be hard to analyse.
The effects of reverberation were not dealt with in this
paper. The artifact filter serves to simply model the
main filtering effects caused by the early reflections in
the room and the corresponding BSS system’s demixing
coefficients. For this reason the artifact filters used in
the test are very short (< 1.5 ms).
The source, interference and noise signals are then all
normalised (by their respective power values) before be-
ing amplified and summed in accordance with a set of
input volume parameters.

3 The Listening Test

The ITU−T P.835 standard [10] was modified to make
the questions asked more relevant to the field of BSS.
This standard is particularly attractive as it has three
questions, which rate different signal attributes. Ques-
tion 1 and 2 now pertain to the background signal in the
excerpt and ask the test candidate to rate the distortion
and intrusiveness respectively. A grade of 5 indicates
an undistorted, non-intrusive background signal respec-
tively. Question 3 obtains an overall representation of
the separation quality, where a grade of 5 indicates ex-
cellent separation. For the actual testing, the five-point
scale was changed to be more continuous with an accu-
racy of 0.2 to help remove any bias effects in the scoring.
The GUI for the test was created using the Matlab GUI
Design Toolbox. The test lasted an average of one hour
per candidate and was split into two equal sessions with
a 15-minute break halfway through. Through a series of
pilot tests, it was decided that a small amount of pre-test
training was needed for the candidates. This would help
remove extreme variations in the data that could skew
the results. A pre-test training GUI was created and ap-
peared before the test and again in the halfway break.
Examples of the extremes in question 1 and question 3
were given. Question 2 was left untrained, as perceived
intrusiveness would vary for different candidates.

3.1 Factors tested

A spread of excerpts was created by the source sepa-
ration modelling system. The factors tested are shown
in Table 1. Three sounds were used (male speech, fe-
male speech, and a cello), from the Archimedes music
database [11], resulting in 6 combinations of different
target and interference signals. The input signals were
all cut to be 4 seconds in length and in such a way that
each speaker could start and finish their sentence and
the cello could start and finish its musical phrase. In-
terf.level is the factor describing the volume changes in
the interfering signal. The artifact parameter dictates
the severity of the filtering applied to the background
signal. Noise is the factor that changes the volume of

the noise generated by the model. Using this informa-
tion, 270 excerpts of 4-second duration were created.

Factors Values

Combination 16 Combinations

Interf. Level -6 dB, -12 dB, -18 dB, -24 dB, -30 dB

Artif.Level No, low or high artifact

Noise -12 dB (high), -24 dB (low), and no noise

Table 1: Factors investigated in the listening tests

3.2 Listening Panel & Randomisation

Not all of the above parameter combinations could be
tested by every candidate due to time restrictions. Less
emphasis was given to the combinations of sounds in
the foreground and background. Therefore, the excerpts
were divided into blocks where all the parameters were
constant apart from the input signal combinations. Each
candidate would listen to one excerpt from each block
and repeat the same excerpt’s grading later on in the
test. The ordering of excerpts was randomised and it
was ensured that over the entire test the grading was
split evenly across all excerpts.
15 candidates took part, which included PhD students,
research assistants and embedded industrial research staff
from the I-Lab at the University of Surrey.

3.3 Equipment & Acoustical Conditions

Audio playback was achieved through a pair of Bey-
erdynamic DT150 headphones connected to a MOTU
828mkII firewire audio interface. The firewire inter-
face was connected to a Compaq Presario 2143A lap-
top, which ran the test software. The recordings used
and the playback system all operated at 44.1 kHz and
no extra processing was utilised. The playback volume
was adjusted to a suitable level by the experiment co-
ordinator and no adjustments were made to this for the
subjects.
The listening test was carried out in the Audio-Visual
Studio located in the I-Lab at the University of Surrey.
The room is purpose built for audio experiments and
is acoustically treated to have a low reverberation time
(RT60 = 100ms) and background noise. Although all
playback was carried out through the headphones, this
room enabled a controlled environment for the test to
be conducted.

4 Results

The statistical analysis of the results was carried out in
SPSS v.14. To remove bias effects the data was redis-
tributed as stipulated in many ITU recommendations
where anchor points are not used [12]:

Zi =
(

xi − xsi

ssi

)
.ss + xs , (2)
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where Zi is the redistributed result, xi is the score from
subject i, xsi is the mean score from subject i in session
s, xs is the mean score of all subjects in session s, ss is
the standard deviation for all subjects in sessions s, and
ssi is the standard for subject i in session s.
Analysis of variance (ANOVA) was used to evaluate the
test data and the standard set of assumptions (bias,
homogeneity and independence [13]) were verified and
accounted for. A custom model for the ANOVA test
of each question was generated to reduce error. These
models were drawn from the key features found from
full factorial ANOVA tests. In the following results a
statement involving the word ’significant’ implies a sig-
nificance of p < 0.05. A number of factors were found to
be significant and so the η2 (partial eta squared) statis-
tic was used to assess the associated power and provide
a more accurate analysis.
The ANOVA factors specifying candidate interactions
were significant for a number of questions. As this is
commonplace in subjective listening tests, due to the
way in which different people grade questions, further
analysis of this factor was not performed.
The results have been broken down into a series of cat-
egories. Firstly, each question is dealt with in turn and
the test data is compared against the key factors. Sec-
ondly, the results are compared against a series of per-
formance measures. Thirdly, the performance values for
perceived separation quality are shown for this test data.

4.1 Question 1 Distortion

The significant and most important factors were noise
(η2 = 0.092), interf.level*artif.level (η2 = 0.043), and
combination*interf.level (η2 = 0.033). Post hoc analy-
sis was used to investigate further interf.level*artif.level
and the results are represented in Fig.2. At low inter-
ference levels, the more artifact filtering the worse the
distortion. At high interference levels, even when the
distortion gets worse, no distinction can be made be-
tween different artifact levels.
The candidates were instructed to grade the distortion
of the background signal and not the noise. Despite
this, the noise factor was significant and increasing noise
caused worse opinions of distortion. This is probably
due to the noise adding to any distortion in the back-
ground signal and causing a worsened grade. Combi-
nation*interf.level did not reveal any interesting results
aside from showing that different combinations produce
different grading at different levels but with no particu-
lar pattern.
This question did not correlate with the other questions
asked, indicating that the amount of distortion in the
background is not vital for improving the performance
of BSS systems. This result gives an indication as to
whether it is better to have a heavily filtered or unfil-
tered background signal, i.e., either is equally as effec-
tive.

4.2 Question 2 - Intrusiveness

The significant and most important factors were interf.level
(η2 = 0.338), noise (η2 = 0.085), and interf.level*noise
(η2= 0.112). Generally speaking, as noise or interfer-

ence level increased the intrusiveness increased. The
interf.level*noise interaction was investigated with post
hoc analysis. Refer to Fig.3 for a graphical representa-
tion of the results. These results can be summarised by
stating that: high interference or high noise was intru-
sive, where a high value in noise reduces the effect of
changes in interference and vice versa.

Figure 2: 95% Confidence intervals for the mean of the
interference level and artifact level interaction in

question 1

Figure 3: 95% Confidence intervals for the mean in
question 2 showing the interaction between interference

level and noise level

4.3 Question 3 - Separation

The results from question 3 are similar to the findings of
question 2. The Pearson correlation coefficient between
the two questions is significant with a value of 0.699 in-
dicating a strong positive correlation. The significant
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and most important factors were again interf.level (η2

= 0.408), noise (η2 = 0.101), and interf.level*noise (η2

= 0.110). The main difference, although very slight, is a
greater significance between low interference levels (see
Fig.4) which were given similar grading in the previ-
ous question. The differences are made more obvious in
Section 4.5 where the noise and the interference affect
intrusiveness and separation with different levels.

Figure 4: 95% Confidence intervals for the mean in
question 3 showing the interaction between interference

level and noise level

4.4 Performance Measure Comparison

All of the excerpts used in the listening test were evalu-
ated using BSS Eval [5] (to generate SDR, SIR, SAR
and SNR) and Schobben’s measure of distortion [1].
Frame sizes were varied from 512 to 65536 samples in
powers of 2 at 44.1 kHz. Two different windows were
used: a Hanning window with 90% overlap and a rect-
angular window with no overlap. A global measure was
obtained in each case through use of a segmental tech-
nique such as segmental SNR [14]. The Pearson corre-
lation coefficient was then evaluated by comparing this
data with the scores from the listening test questions.
Question 1 was most highly correlated with SIR. As the
candidates were asked to grade this question regardless
of the Gaussian noise, it would seem logical that SIR was
the best measure. This is due to it simply being the tar-
get power divided by the interference power and hence
does not take into account the noise. The correlation did
not vary significantly with frame size or window type,
although there was a slightly higher correlation when
using smaller frame sizes and a Hanning window.
Questions 2 and 3 were most highly correlated with SDR
as shown in Fig.5 (see table 2 for the legend). Question
2 results have not been included due to the high corre-
lation and similarity with question 3. SDR is the only
measure that takes into account interference level, noise
level and amounts of filtering in the excerpts. These
tests have shown that SDR is the best candidate for the
evaluation of BSS systems. It is interesting to note that

there is a slight increase in correlation when using larger
frame sizes with a rectangular window, which is contra-
dictory to question 1.
Previous papers involving listening tests for BSS have
made no mention of what are acceptable perceived qual-
ity levels for the various performance measures. These
results also show that, using BSS Eval to calculate SDR,
a value in excess of 17 dB gave a separation score (ques-
tion 3) > 4 (at least ’Good’ on the 5 point scale). This
value varies for different frame sizes, overlaps and win-
dows but 17 dB can be taken as the worst-case scenario
(bottom of the worst 95% confidence interval). Simi-
larly, for an SDR value in excess of 22 dB a grade of
’Excellent’ will be obtained. Using the same reasoning,
from the results of question 2 (which are again similar
in appearance to the results from question 3 and hence
not included here) a value of 20 dB SDR and 23 dB SDR
are needed for a score > 4 and a score of 5 respectively.

Figure 5: Pearson correlation coefficients between
question 3 and a number of objective measures, against

frame size.

4.5 Performance Measure Modifications

The SDR measure has no preference over noise or in-
terference signal power. The same level in each case
degrades the measure by the same amount. A nonlinear
regression model of the following form was created to
test this assumption:

SDRnew = 10log10
‖starget‖2

‖b1(einterf + eartif ) + b2(enoise)‖2

(3)
It was found that when minimising the error by regres-
sion against the scores from question 2 on intrusiveness
that the values of b1 and b2 were equal. When the same
technique was used on the scores from question 3 on sep-
aration, it was found that b2 was approximately twice
b1. This indicates firstly, that for this particular test,
the candidates found that when grading intrusiveness a
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Symbol Description Window Overlap

BSS Eval SDR Rectangular 0%

BSS Eval SDR Hanning 90%

BSS Eval SIR Rectangular 0%

BSS Eval SIR Hanning 90%

Schobben’s Distortion Rectangular 0%

Schobben’s Distortion Hanning 90%

BSS Eval SAR Hanning 90%

BSS Eval SAR Rectangular 0%

BSS Eval SNR Hanning 90%

BSS Eval SNR Rectangular 0%

Table 2: Legend and description for Fig.5

coherent signal in the background was just as intrusive
as noise. Secondly for the separation scores, noise was
found to be more degrading.
The SDR equation could be modified to accommodate
this finding, but further investigation would be required
to verify for other noise types and different experimen-
tal set-ups. For BSS systems operating under similar
conditions to this test, it has therefore been shown that
the reduction of noise in the output is more important
than a reduction in other interference signals.

5 Conclusion

Relationships between subjective results from a listening
test and objective results from BSS performance mea-
sures have been investigated. A modelling system, that
mimics the output of a BSS algorithm, was created that
allowed fast generation of excerpts with a spread of pa-
rameters. These parameters included the types of input
signal used, interference levels, noise levels, and artifact
filter severity. An ITU listening test standard was mod-
ified to be applicable to the BSS domain and was used
in conjunction with this modelling system to obtain the
aforementioned subjective results.
The listening test obtained data from three questions
relating to background distortion, background intrusive-
ness, and overall separation quality. From this, a num-
ber of things can be extrapolated. Perceived distortion
of the background signal is not important for separa-
tion quality. Intrusiveness and separation are linked and
their main factors are noise and interference levels. SIR
is highly correlated with perceived distortion and SDR
is highly correlated with intrusiveness and separation.
An SDR value greater than 17 dB will produce a sepa-
ration quality MOS greater than 4. Similarly, an SDR
value greater than 22 dB will produce a grade 5 separa-
tion quality MOS.
Noise in the excerpt degraded the results more than the
equivalent volume from another coherent source. From
these test results, it would seem that future BSS system
designers should try at all costs to remove noise from

the resulting outputs. This also indicates that a possible
modification to the SDR measure is to have an increased
weighting for the noise power. Twice the weighting for
noise power produced the best measure for these results.
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