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A new method to underwater sound field calculations is proposed in application to irregular in horizontal plane 
waveguides. It realizes the full two-way coupled-mode approach and exploits an idea of a problem solution 
dependence on the certain variable parameter that is the position of a boundary of the irregular region. With 
respect to this parameter for waveguide modes, an initial value problem can be formulated in horizontal plane 
that is equivalent to the boundary value problem for the original acoustic wave equations. This fact allows 
simulating sound field in waveguides based on the evolution ordinary differential equations without traditional 
approximations and so for arbitrary both source distance from the irregular region and degree of irregularities. 
Examples of a simulation for two dimensional irregular waveguide models with upslope rigid and absorbing 
penetrable bottom are presented for low frequencies and shallow sea conditions. They illustrate the serious 
difference between the exact and approximate solutions that appears due to both strong modes coupling and 
backscattering within the considered irregular waveguides. 

1 Introduction 

It is well known that regularities of acoustic field 
propagation in layered and nonlayered oceanic waveguides 
directly correlate with horizontal heterogeneities. If the 
heterogeneities are sufficiently smooth, very often no 
qualitative differences are observed in the laws of field 
formation compared to the layered situations. Then in order 
to make quantitative estimates of the losses during acoustic 
wave propagation, it is possible to limit ourselves to the 
framework of known methods, such as the adiabatic 
approximation, Wentzel-Kramers-Brillouin (WKB), or 
parabolic equation (PE) method [1, 2]. Serious difficulties 
arise when distortions appear in the smooth character of 
horizontal irregularities in the medium. In this case, the 
problem in the horizontal plane becomes a boundary 
problem and the approximate methods mentioned above are 
of little use. There are only a few works in acoustic 
literature in which this problem is considered in the exact 
formulation, and their authors nevertheless do not avoid 
approximations at different stages of the solution [3, 4]. If 
heterogeneities are three dimensional (3D) there are no 
related works. In this paper, the new approach to simulate 
such problems is presented. It is based on the first-order 
equations with initial conditions, which provide exact 
descriptions of the acoustic situation in the cases when 
distortions appear in the smooth character of horizontal 
heterogeneities in the medium as well as in the other 
applicability conditions of the known approximate methods.  

2 Problem statement, governing 
equations 

Let us address to original linear acoustic equations for the 
fields of tonal point source in 3D heterogeneous ocean. In 
cylindrical coordinates (r, z, ψ) there is the following 
boundary problem:  
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Here p and v = {u,vψ,w} are the fields of acoustic pressure, 
horizontal and vertical (w) components of the oscillatory 
velocity, c and ρ are the sound speed and density of the 
medium, ω is the cyclic frequency of radiation. Arguments 
r0,z0,ψ0 are omitted below to abbreviate notation. Let 
values z = {h, H} correspond to the location of the ocean 
bottom and ocean surface. We specify normalized value of 
density ρ = 1 in the water. The bottom can usually be 
considered stratified in layers, i. e., ρ = ρ(z), although this 
is not a principal, since distortions from layered 
stratification can be taken into account if necessary, using 
the boundary condition of the general form:  
p(r,H,ψ) = 0 ,     p(r,h,ψ) - Ω(r,h,ψ) w(r,h,ψ) = 0  ,         (2) 
where, according to the definition, we introduced the 
function Ω(r,z,ψ) = p(r,z,ψ)/w(r,z,ψ) of acoustic impedance 
at level z. In horizontal plane (r,ψ) for functions p,vψ,w 
there are the condition of a 2π-periodicity, condition of the 
finiteness as r → (0,∞) and continuity condition in passing 
through the interfaces between regular (layered) and 
irregular parts of a medium. If the sea medium is stratified 
in layered form and the impedance at the bottom exists in 
the form of fluid halfspace (or its part), the solution of 
problems (1)-(2) can be presented as a sum of propagating, 
leaky modes and field of a side wave (branch-cut term) [1, 
2, 5]. If the medium includes horizontal heterogeneities 
c(z,r,ψ) and h(r,ψ), then, according to the method of 
transverse sections (the full two-way coupled-mode 
approach), the solution of problem (1)-(2) can be presented 
in the form of decomposition over local modes in each 
separate vertical section r = const of the waveguide [1, 2] in 
the preset direction ψ: 

p(r, z, ψ) = l
l

ϕ∑ 1 (r, z, ψ) G l (r, ψ) ,       

w(r, z, ψ) = l
l

ϕ∑ 2 (r, z, ψ) G l (r, ψ)  ,  

u(r, z, ψ) = [iωρ]-1
 l

l
ϕ∑ 1 (r, z, ψ) g l (r, ψ) ,  

vψ(r, z, ψ) = [iωρ]-1
 l

l
ϕ∑ 1 (r, z, ψ) g l

ψ (r, ψ) .      (3) 

Normalized eigenfunctions ϕ 1l(r,z,ψ), ϕ 2l(r,z,ψ) = 

[iωρ(z)]-1(∂ ϕ 1l/∂z) with a preset domain of definition D 
and local eigennumbers κl(r,ψ) depend on r, ψ 
parametrically, and in each r-section they satisfy the layered 
eigenvalue problem. Substitution of modal presentations (3) 
into original Eqs.(1)-(2), taking into account 
orthonormalized eigenfunctions, leads to equations for the 
horizontal amplitudes Gl(r,ψ), gl(r,ψ), gl

ψ(r,ψ) of 
decomposition (3) [6, 7]:                                                   
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coupling caused by the horizontal variations of the medium.   

3 Boundary problem reduction to 
the initial-value one 

Let ψ0=0 and simplify the problem assuming azimuth mode 
coupling is adiabatic, i. e., Vml 

ψ(r,ψ) = 0. Taking into 
account 2π-periodicity of functions, for ψ-harmonics of the 
field we obtain: 

{Gm(r,ψ), gm(r,ψ)}= 
n=-

{
∞

∞
∑ Gm(r,n), gm(r,n)}exp(inψ).       (5) 

For preset ψ problem (4) can be reduced to the following (n 
is omitted, functions are scaled by the constant 1/2πr0): 
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am = - , )mϕ (1 0 0z r /2. Assume that irregular area with a point 
source occupies the part of a medium r∈(L,L0) (Fig.1). We 
place the source at the right interface r0→L, then boundary 
conditions to Eqs.(6) follow from the continuity of 
functions Gm and gm , taking into account gm(r)- jump at the 
source point:   
gm(L) + Dm(L)Gm(L) = -2am  ,                                           (7a) 
gm(L0) + dm(L0)Gm(L0) = 0       .                                        (7b) 
Here        Dm(L)  =  κm

1 Hn+1
(1)(κm

1 L)/Hn
(1)(κm

1 L)  -  nL-1 ,   
dm(L0)  = κm

0 Jn+1 (κm
0 L)/Jn (κm

0 L) - nL0
-1 .  

All the known approximate methods simplify this boundary 
problem replaced it by the initial-value problem. Usually, 
the backscattered field is ignored and irregular region is 
positioned to the far field of a source. However, the 
boundary problem (6)-(7) without any approximations can 
be reduced to the causal problem for imbedding equations 
[6-8]. For this aim we have to consider a parametric 
dependence of functions Gm, gm on the position L of 
irregular region boundary L, where point source is located 
(or on that, if r0 > L, normal modes incident from the 
source), i. e., Gm(r) = Gm(r;L), gm(r) = gm(r;L). Using 
standard procedure [9] of differentiating with respect to the 
parameter L and comparing the new and old problems we 
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Fig.1 Point source is at the interface boundary L. 
Tm(L0)Jn(κm

0r) and Tm(L)Hn
(1)(κm

1r) are outgoing fields of 
modes. For |κmr|>>n asymptotics are valid for cylindrical 

functions Bessel Jn and Hankel Hn
(1) . 

obtain for modes the system of coupled ordinary differential 
equations (ODE) instead of the boundary problem (6)-(7):    

Gm(r;L) = Gm(r;r)exp{ dξ∫
 L

 r
[(ξ-1-Dm(ξ)) - Pm(ξ)Gm(ξ;ξ) + 

+ am
-1

l
∑V ml (ξ)[Gl (ξ;ξ)(Dl (ξ) - Dm (ξ))/2 + al]]}  ,     (8a) 

d
dL

Gm(L;L) = [L-1-2Dm(L)]Gm(L;L) - 2am- Pm(L)Gm
2(L;L) 

 + am
-1

l m≠
∑V ml(L)[Gm(L;L)Gl(L;L)(Dl(L)-Dm(L))/2+Gm(L;L)al  

- Gl(L;L)am],   Gm(L;L)|L = L0 = 2am /[dm(L0) - Dm(L0)],   (8b) 
Pm(ξ) = [Dm(ξ)/ξ-Dm

2(ξ)+(∂/∂ξ)Dm(ξ) + n2/ξ2 - κm
2(ξ)]/(2am). 

Similar initial value equations are valid for functions 
gm(r;L). Deriving Eqs.(8) we imply that boundaries L,L0 
separated irregular area are consistent, as in reality, i. e., 
there are no jumps of the medium parameters for each r-
sections, so κm

1 = κm(L) and has to be differentiated with 
respect to L. Imbedding Eqs.(8) are already closed 
respectively each matrix function Gm(r;L) and similar for 
gm(r;L). They satisfy the principle of dynamic causality, and 
well-developed methods to solve ODE numerically can be 
applied for them. Functions Gm(L;L), satisfying Eqs.(8b), 
characterize backscattered field of modes at the irregular 
medium cross sections. Thus, in order to obtain the solution 
of boundary problem (4)-(7) without approximations and 
so, find sound field within the irregular medium, for preset 
ψ we have to solve Eqs.(8b), next calculate the integrals 
(8а), and sum up harmonics (5) and modes (3) for taken 
horizons of the source and observation. It is seen from 
Eqs.(8а), that backscattering within the medium influences 
both mode amplitude and phase. Below to illustrate our 
approach we consider in Cartesian coordinates (x,z) two-
dimensional problem for the source of radiation -δ(x)δ(z). 
Passage to this problem in Eqs.(6)-(8) corresponds to n = 
0,1, |κmr| >> 1, or to such ψ-harmonics that satisfy the 
condition |κmr| >> n. In this case (8) can be simplified [9]: 

Gm(x;L) = Gm(x;x)exp{ dξ∫
 L

 x
[iκm(ξ) - iκm′(ξ)Gm(ξ;ξ)/(2am) 

 + a m
-1 V

l
∑ ml(ξ)[iGl (ξ;ξ)(κm(ξ) - κl (ξ))/2 + al]]} ,       (9a) 

d
dL

Rm(L;L) = 2iκm(L)Rm(L;L) + κm′(L)[1- Rm
2(L;L)]/(2κm) 

+ am
-1

l m≠
∑V ml (L) al [(1- Rl )(1+ Rm) - (κm(L)/κ l(L))(1+ Rl ) 

×(1- Rm)]/2 ,   Rm(L0;L0) = 0 .                                          (9b) 
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Here κm′(x) = (∂/∂x)κm(x) and we write the problem solution 
via the backscattered field of modes Rm(x;x) = 
iκm(x)Gm(x;x)/am -1, that satisfies Eqs.(9b).  

4 Several examples for modeling in 
two dimensions 

As a first example for simulation consider irregular 
waveguide with homogeneous water and sloping rigid 
bottom (RBM) for two low sound frequencies f = 8, 30 Hz, 
when there are small quantity of propagating modes within 
the waveguide. Let the source is located at the depth z0 - h = 
0.5(H - h). Eqs.(8) have been simulated by the author’s 
algorithms using the subroutines of ODE solving of the 
MATLAB product. In Figs.2,3 the charts of a field 
transmission loss in decibels (dB) are presented versus the 
distance x for several horizons of an observation. Level of 

Fig.2 Transmission loss for indicated hydrology and two 
observation depths from the surface: 1 – 100 m, 2 – 10 m. 
Bold solid curves are the exact solution by Eqs.(9), thin 
curves are the one-way coupled-modes (OW), dashed 

curves are the adiabatic approximation. Point source S is at 
the depth 100 m and distant 300 m from the irregular area 

x∈(L0 = 500 m, L = 1500 m), sound frequency is 8 Hz. 

curves is scaled by the value iH0
(1)(k)/4 (k = ω/с is the wave 

number in the water) of a free space pressure field 
respectively the distance r = (x2 + z2)1/2 = 1 m from 
radiating line tone source -δ(r)/r. Sound field intensity 
behaviour is presented for the source that radiates within 
the layered part of the waveguide distant d = |x0-L| = 300 m 
from its irregular region. But at first, we calculate mode 
fields (9а) for the source placed at the boundary L, after that 
sound field can be expanded algebraically to the regular 
parts of a medium. In the considered example quantity of 
modes in the layered parts of the waveguide are varied in 2 
times in passing through the irregular area. So, for 8 Hz 
there are one propagating mode m = 1 at x < L0  and two 
modes m = 1, 2 at x > L. For 30 Hz there are 4 and 8 
propagating modes correspondently. Passing through the 
irregular part of the waveguide propagating modes 
transform to evanescent ones and there is a strong 
backscattering nearby the sections (where κm ≈ 0) of such 
transform. At that time, the other modes are considerably 

amplified due to coupling. As an example, for 8 Hz 2nd 
mode essentially amplifies 1st mode. In general these two 
modes form pressure field within the irregular part of 
waveguide for the distant source. However, if d decreases 
the influence of higher modes (evanescent ones) appears. 
Region of such influence x ∼ (Im κm)-1, and occupies more 
and more portion of the irregular area if slope angle of the 
bottom increases. For d = 0 m (source is at the boundary L) 
even for the frequency 8 Hz we need take into account no 
less than 16 modes to describe the field nearby source 
better than 1% error. If frequency grows to 30 Hz, inside   

Fig.3 Similar to Fig.2 transmission loss for the frequency 
30 Hz. Observation depths from the surface: 1 – 100 m, 

 2 – 80 m, 3 – 10 m. 

the irregular area of the waveguide features of mode 
coupling such that odd modes 3, 5 and 7th are sharply 
amplified in series. As a result, for x < L0 field is 
determined by the 3d propagating mode, and for x > L 5th  
and 7th modes together with modes 1 and 2 contribute 
generally to entire field. The distant source case d = 300 m 
was specified here advisedly to compare with the results of 
one-way propagation approximate methods, since one-way 
approximation requires the source is placed far from the 
irregular area of a waveguide. It is known that adiabatic 
approximation ignores backscattering and mode coupling. 
Methods WKB and PE neglect backscattering and consider 
mode coupling to certain degree. In figures, adiabatic 
solution is indicated by dashed curves and is well seen due 
to considerably lower levels respectively the exact solution 
(9) (about 15-40 dB lower). Qualitative behaviour of 
adiabatic curves is also different from the exact ones. It is 
characterized by the gradual decrease along the all track of 
propagation and by the essential smoothness at frequency 8 
Hz (in this case field is generally determined by the two 
first modes, and only by the 1st mode as x < 530 m). 
Whereas the exact solution due to backscattering and mode 
coupling is characterized by the essential level oscillations 
and its rise to the boundary x = L0, that is more expressed 
for higher frequency 30 Hz. Thin solid curves in figures 
correspond to one-way coupled-modes (OW). In this case 
backscattering was neglected, so the transmission loss 
curves coincide with the adiabatic ones right side from the 
irregular area. At the same time mode coupling due to 
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irregularities has been taken now into account (for all 
propagating modes, and this is already out of the scope of 
WKB). It is well seen that there is an intermediate sample 
between the exact and adiabatic solutions. Difference from 
the exact solution in the parts of waveguide now is varied. 
So, for 8 Hz it is about 8-10 dB right and left from the 
irregular area. For 30 Hz (Fig.3) the difference is minimum 
≈ 3-5 dB as x < L0, it is ≈ 10 dB within the irregular region 
and the highest ≈ 20-40 dB as x > L. Therefore as frequency 
grows OW approximation describes better the transmitted 
field (x < L0), and worst of all (as adiabatic theory) it 
describes the field at x > L, where it is a combination of the 
direct and backscattered fields. Note also the fact that for 
higher frequency the difference between curves increases.  
In reality, sea bottom is not perfectly rigid boundary, so 
above results can not be automatically applied to practice 
and require corrections. As the next model, consider 
irregular waveguide with the finite impedance of the 
bottom. That is the Pekeris waveguide problem (Fig.4). It is  

Fig.4 Irregular waveguide model with homogeneous water 
and upslope bottom h(x) in the form of a halfspace, or a 

fluid sediment layer of the thickness |h-h0| = 300 m (dash 
line). There are the parameters: с = 1500 m/s, с1 = 1650 

m/s, k1 = ω(1+iβ)/с1 is the wave number in sediments, mρ = 
ρ1/ρ = 2 is the ratio of densities, β = 0.005. Point source S 

location at the boundary L is shown by star. 

well known that for the Pekeris waveguide model (PM) 
sound field can not be reduced only to the sum of discrete 
modes. Entire solution involves also the side wave field, 
that is the contribution of the continuous spectrum of values 
κ in the form of a branch-cut integral.  Sediment halfspace 
exactly the reason of its appearing. Pekeris vertical branch 
cut (k1, ∞) in the complex κ-plane was referenced for our 
modeling. As a result, sound field reduces to the sum of 
propagating and leaky modes and to the mentioned cut 
integral. For the irregular waveguide, if such integral has 
considered, calculations become very difficult. So the 
prospective way to avoid this complexity is considering the 
side wave as the contribution of the certain series of 
discrete eigenvalues κm, which approximate the continuous 
spectrum of κ. In papers [10, 11] one of the choices to 
make such approximation was proposed for layered 
waveguides. Fluid halfspace in the Pekeris model has been 
replaced by the finite thickness layer having the complex 
metric |h-h0|exp(iπ/4) and rigid lowest boundary. It was 
substantiated that the accuracy of such approximation 

(convergence to value of the Pekeris branch-cut integral) 
rapidly grows as |h-h0|-3, and slower, as |h-h0|-1, only if 
frequency is critical. We realized this way exactly to obtain 
the part of a solution due to the side wave in the irregular 
waveguide based on the Eqs.(6)-(9), taking thickness value 
|h-h0| = 300 m. Acoustical frequency for modeling has been 
taken f = 105 Hz, in order to the quantity of propagating 
modes in a waveguide was not large, but not less than 1. In 
the considering case of an upward wedge (Fig.4) quantity 
of modes decreases from 6 modes as distance x > L = 680 
m to 1 mode as x < L0 = 20 m. In Figs.5, 6 below the field 
intensity loss are presented similar to Figs.2, 3. It is well 
seen that in this case of an upward wedge the backscattered 
field caused by the irregular area is large enough. This fact 

 Fig.5 Transmission loss for hydrology in Fig.4 and two 
observation depths from the surface: 1 – 5 m, 2 – 80 m. 

Bold solid curves are the exact solution by Eqs.(9), dotted 
curves are one-way coupled-modes (OW), dashed curves 

are the adiabatic approximation. Point source S is located at 
the depth 50 m and at the interface L = 680 m between the 

layered and irregular areas, sound frequency is 105 Hz.  

results in the considerable divergence of curves 
corresponding to the exact solution and to one-way 
coupled-mode theory, that is similar to previous RBM-case. 
Note that OW-dependences have been obtained based on 
the field exact representation (9а) if backscattering was 
neglected. For this aim in Eq.(9а) we have to substitute 
Gm(x;x) = am/[iκm(x)], since Rm(x;x) = 0. Then, we obtain 

Gm(x;L) = am[iκm(x)κm(L)]-1/2 exp{ dξ∫
 L

 x
[iκm(ξ)  

 + a m
-1 V

l
∑ ml(ξ)al [(κm(ξ) - κl (ξ))/2κl (ξ) + 1]]} ,   (10) 

In adiabatic case besides must be Vml(r) = 0. From Eq.(9b) 
it follows that backscattering and mode coupling effects are 
closely related, so that strong backscattering can be 
observed if strong coupling of modes is present in the 
waveguide. For the case considered (Fig.5) maximum value 
of the backscattering is observed at the entry to wedge, 
where point source is located. As far as modes penetrate 
inside the wedge the coupling between decreasing quantity 
of essential modes become very important. That is why 
OW-dependences correspond better and better to the exact 
curves whereas adiabatic curves  (they lie noticeably lower) 
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on the contrary correspond worse and worse. Mode 
coupling leads to general increase of a field level in the 
wedge, but at its way out, x < L0, level rapidly decays, since 
for these distances, x < 20-30 m, sound field is determined 
only by the 1st mode, though it is amplified respectively the 
adiabatic approximation. Side wave presence is well seen 
even for the depth 5 m, especially at the wedge entry, x ≈ L 
= 680 m. In this region the side wave contribution varies 
the intensity of field in 5-15 dB. 

Fig.6 Transmission loss similar to Fig.5. Bold solid curves 
are the exact solution, thin solid curves are the solution 

without side wave and dashed curves are one-way coupled- 
modes.  

5 Conclusion 

In this paper the new prospective approach to the low- 
frequency acoustic field modeling in the irregular ocean 
waveguides is presented. It is based on the boundary 
problem statement for acoustic wave equations describing 
the modes in horizontal plane and its reduction to the 
equivalent initial-value problem involving coupled matrix 
ordinary differential equations. It allows in many cases 
obtaining the useful form of the approximations (e. g., 
writing in the explicit integral form the solution to one-way 
coupled-modes approximation and to the particular cases of 
the backscattered field of modes) as well as the numerical 
analysis of sound propagation in 2D and 3D waveguides  
by well-developed methods of ODE solving. For the low 
frequencies of sound and 2D waveguide model with a slope 
rigid bottom the considerable difference is obtained 
between the transmission loss due to the exact solution (9) 
and the loss corresponding to the approximate methods. 
However, this fact is of no surprise since for the considered 
situation the backscattered field being the part of entire 
field is large enough due to both the rigid bottom and the 
non-smooth its profile. The question is how much the 
obtained results will change in the case of more realistic 
bottom model? Already by RBM-example we have 
answered that for the non rigid sea bed one can wait the 
similar results for higher frequency of sound (∼ 100 Hz), 
since as it was established the backscattering increases if 

frequency grows (if the quantity of propagating coupled 
modes rises that appear in decrease of difference κm - κl). 
Indeed, by the example of the irregular Pekeris waveguide 
it was shown that strong effects of the backscattering and 
mode coupling can be observed also in the case of a fluid 
absorbing sediments forming the penetrable bottom. Due to 
this fact, one-way coupled-modes often can not properly 
describe sound field in various parts of a waveguide, even 
more so for adiabatic theory. Side wave as the branch-cut 
contribution to entire field taken into account does not 
change the quality features of transmission loss, if at least 1 
propagating mode is presented within the irregular 
waveguide. Nevertheless, this contribution creates the 
essential quantity corrections for loss in the waveguide. 
These corrections reach 5-15 dB depending on the distance 
and horizons of the source and the observation. 
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